NOVEL BIOACTIVE COMPOUNDS FROM MANGROVE DERIVED ACTINOMYCETES

Kumari Amrita, Jain Nitin, C.Subathra Devi*
Industrial Biotechnology Division, School of Bio sciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India

Article Received on: 08/05/12 Revised on: 18/06/12 Approved for publication: 21/07/12

*Dr.C.Subathra Devi, Assistant Professor (Senior), Industrial Biotechnology Division, School of Bio sciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India Email: csubahtradevi@vit.ac.in

ABSTRACT
Mangrove is most productive and unexplored ecosystem that approximately covers one fourth of world coastline with high diversity of thriving organism. Recently the rate of isolation of novel bioactive compounds from microorganism living in mangrove forest has tremendously increased which is reflected in significant hasten for exploration of mangrove actinomycetes. Actinomycetes are group of bacteria which are extremely interesting as active producers of many primary and secondary metabolites. Many survey reports has depicted that the biologically active compounds which have been obtained so far from microbes, 45 percent are produced by actinomycetes, 38 percent by fungi and 17 percent by unicellular bacteria. Actinomycetes from mangrove environment provide diverse and are potential rich source of antibiotics, anticancecr, antifungal and antiviral agent, enzyme and enzyme inhibitor. Mangrove actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.

KEYWORDS: Mangrove actinomycetes, bioactive compounds, anticancecr agent.

INTRODUCTION
Actinomycetes, characterized by a complex life cycle, are filamentous Gram-positive bacteria belonging to the phylum Actinobacteria that represents one of the largest taxonomic units among the 18 major lineages currently recognized within the domain bacteria. They are the most economically and biotechnologically valuable prokaryotes and are responsible for the production of about half of the discovered bioactive secondary metabolites, antibiotics, anticancer agents and enzymes. Around 23,000 bioactive secondary metabolites produced by microorganisms have been reported and over 10,000 of these compounds are produced by actinomycetes, representing 45% of all bioactive microbial metabolites discovered. Among actinomycetes, around 7,600 compounds are produced by Streptomyces species2. This group is majorly distributed in soil population. Soil conditions such as geographical location, pH, temperature, moisture and nutrient influenced the number and type of actinomycetes. Unlike terrestrial habitat actinomycetes is less understood in the mangrove areas, further, very little information is available in literature related to mangrove actinomycetes and its novel bioactive compounds. Mangroves, unique woody plant communities of intertidal coasts in tropical and subtropical coastal regions, are highly productive ecosystems though surprisingly little is known about the microbial communities living therein3, although there is evidence that mangrove sediments contain high populations of novel actinomycetes. Mangrove ecosystems are nutritionally versatile as that of terrestrial ranging from phototrophy to chemolithotrophy and chemohetrotrophy which affect the diversity of mangrove actinomycetes in terms of genetic and metabolic features and therefore new metabolites. Mangrove soil, sediments, swamps, bottom mud and plants are rich source of new species of Streptomyces, Nocardiopsis and various strain of actinomycetes. The forest is unique for its agroecological condition and soil of this mangrove forest is routinely or occasionally inundated with low, moderate or high saline water. This ecosystem is ideally situated at the interphase between the terrestrial and marine environment and supports a rich and diverse group of microorganisms. The mangrove environment is a potent source for the isolation of antibiotic-producing actinomycetes4. This review article report the identified novel secondary metabolites having different type of activities that has been isolated from actinomycetes thriving in mangrove environment.

Distribution of Species
The mangrove forest of the world is approximately 53,190 square miles5. The largest percentage of mangrove is found in Asia basically Sunderban and South China Sea from where novel species of actinomycetes has been obtained. In India, the area under mangrove is distributed over 4900 sq. km., which accounts for around 8% of India’s coastline6 and from mangrove forest such as Manakkudi, Kanyakumari district, Parangipettai coastal area, Pichavaram, Tamilnadu and also in west coast of India these actinomycetes have been reported. Other mangrove forests present in Wenchang and Pohoiki, Hawaii has also given evidences for existence of actinomycetes. Diversity of microbial communities inhabiting this unique swampy, saline, anaerobic environment is useful as it provides clue of the microorganism and its adaptability in such environment7.

BIOACTIVE COMPOUNDS PRODUCED BY MANGROVE ACTINOMYCETES
In literature very few examples are there for exploitation of mangrove actinomycetes for discovery of novel bioactive compounds and many are at early stage of research. Members of the genus Streptomyces are a rich source of novel bioactive, commercially significant compounds. Although Streptomyces strains were frequently isolated from terrestrial environments, they have also been recovered from aquatic and symbiotic environments8. Table 1 represents the various secondary metabolites that have been isolated from actinomycetes which are present in diverse source and different environmental condition of mangrove ecosystem.

Ligninase, Laccase and Manganese peroxiase
Ligninase, Laccase and Manganese peroxiase are lignin degrading enzyme produced by Streptomyces psammaticus that has been isolated from west coast of India. Samples were collected from sediments, soil, decaying logs found in intertidal region and swamp. These enzymes can degrade
compounds like syringic acid, ferulic acid, vanillic acid, cinnamic acid and guaiacol acid.6

**Benazmides and Quinazolines**

One new benzamide, 3-hydroxyl-2-N-iso-butryl-anthranilamide (Fig.1a) together with two known benzamide 3-hydroxy-anthranilamide , anthranilamide and three known quinazolin 8-hydroxy-4(3H)-quinazoline, 8-hydroxy-2methyl-4(3H)-quinazoline (Fig. 1b) and 8-hydroxyl-2,4-dioxoquinazoline were extracted from Streptomyces sp. (No.061316). The strain was isolated from mangrove soil sample collected at Wenchang. These compounds display inhibiting effect against Caspase-3 catalytic activity in vitro. Research on Caspase-3 inhibitors can help to develop drugs against excessive apoptosis-related diseases.10

**Alkaline Protease**

Alkaline protease is an enzyme which has been extracted from alkalotolerant Streptomyces sp. Actinomycetes were isolated from rhizosphere soil of mangrove species, Rhizophora annamalayana Kathir, on the bank of Vellur estuary, Portonovo, South coast of India.11

**L-glutaminase**

L-glutaminase is an enzyme produced from Streptomyces olivochromogenes that has been isolated from the mangrove Rhizophora apiculata of Parangipetai coastal area,Tamil Nadu,India. In food industry this enzyme is used as a flavor enhancer by increasing glutamic acid content in food through hydrolysis of L-glutamine to L-glutamic acid and ammonia. It is also used in enzyme therapy for cancer especially for acute lymphocytic leukemia. Another important application of L-glutaminase is in biosensors for monitoring the glutamine levels in mammalian and hybridoma cells.12

**Chalcomycin B**

Chalcomycin B (Fig.2) is a new macrolide antibiotic produced from Streptomyces isolate B7064 that has been derived from mangrove sediment near Pohoiki, Hawaii. This compound has antibacterial and antifungal activities against Bacillus subtilis, Streptomyces viridochromogenes, Staphylococcus aureus, Escherichia coli, Candida albicans and Mucor miehie.13

**α Galactosidase**

α-Galactosidase or melibiase (α-D-galactosid galactohydrolase) is an exoglycosidase which has been derived from two actinomycetes cultures, coded AGP-27 and AGP-47. These organisms were isolated from soil sample collected from mangrove regions along the West coast of India. This compound cleaves terminal α-1,6 linked galactose residue from α-D-galactosides including galactose oligosaccharides, such as melibiose, raffinose and stachyose, and branched polysaccharides, such as galactomannans and galacto (gluco) mannan.14

**L-asparaginase**

The oncolytic enzyme L-asparaginase produced by Streptomyces parvulus KUAP106 that has been isolated from sediment sample pichavaram mangrove ecosystem, situated along the South East coast of India15

**Norcardiatoine**

Three new 2-pyranone derivatives, namely Norcardiatoines (Fig.3) were produced from the strain Nocardiproisp. A00203, mangrove endophytic actinomycetes from leaves of Aegiceras corniculatum collected from Jimei, Fujian Province, China.16 All derivatives of norcardiatoines compounds were extracted as yellow oil. These compounds shows cytotoxic activity against HeLa cells and antimicrobilia activity against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and yeasts (Candida albicans and Aspergillus niger).16

**Rifamycin**

Rifamycin produces by an actinomycetes strain AM105 that was extracted from mangrove sediments samples, South China. Phylogenetic analysis showed a close relationship of strain AM105 with Micromonospora matsumotoensis DSM 44100, Micromonospora carbonacea DSM 43168, Micromonospora mirobrigensis DSM 44830 and Micromonospora siamensis ICMP 12729. A clear antimicrobial activity was revealed against Staphylococcus aureus. Staphylococcus aureus OY84 (a meticillin-resistant clinical isolate), Bacillus subtilis. Further identification showed that the active compound (purple amorphous powder) consisted of rifamycin S and its isomer while M. carbonacea was reported to produce everninomicin.17

**Anthrone and Lactone**

Two anthrones and one lactone (Fig.4) were produced from an actinomycete strain (N2010-37) of bottom mud in Zhanjiang Mangrove, South China Sea. They have cytotoxicity activity against human chronic granulocytic leukemia cell line K562 strain.18

**Xiamycin**

Xiamycin (Fig.5) is a pentacyclic indolosesquiterpene that have been obtained from an endophyte Streptomyces sp from a mangrove plant Bruguiera gymnorrhiza which is one the most important and widespread species in Pacific. Another compound xiamycin methyl ester has also isolated from same strain. Xiamycin exhibits selective anti-HIV activity, it specifically blocks R5 but has no effects on X4 tropic HIV-1 infection and also shows cytotoxic activity. Xiamycin represents one of the first examples of indolosesquiterpenes isolated from prokaryotes.18

**Alkaloids and Quinine**

Alkaloids and Quinine were extracted from ACT01 (Streptomyces sp.GQ478246) and ACT02 (Streptomyces sp. HQ340165). Soil sample was collected from Manakkudi mangrove ecosystem, Kanyakumari district, Tamilnadu, India. These compounds exhibit anticancer activity against breast cancer cell lines (MCF-7 and MDA-MB-231). Alkaloids are nitrogenous compound and are microtubule interfering agent, hence avoid spindle formation during cell division, inhibiting topoisomerase, mitochondrial damage and induce release of Cytochrome c and apoptosis inducing factor. Quinine derivatives (driamycin, daunorubicin, mitomycin C, streptonigrin and lapachol) interfere in DNA and RNA replication and mitochondrial oxidative pathway or the formation of superoxide, peroxide and hydroxide radicals as toxic products in cell line.20

**Azalomycin**

Azalomycin Fα, 2-ethylpentyl ester and azalomycin Fα, 2-ethylpentyl ester, two new macrocyclic lactones, along with three known compounds of azalomycins Fα, Fα, and Fα, were identified from metabolites of Streptomyces sp. 211726 isolated from mangrove rhizosphere soil. Azalomycin Fα, 2-ethylpentyl ester is a new 36-membered macrocyclic lactone antibiotic which showed broad-spectrum antifungal activity and moderate cytotoxicity against human colon tumor cell HCT-116.21,22

2- allyloxyphenol

2-allyloxyphenol (Fig.6) is a synthetic drug and intermediate that has been naturally produced from new species of genus Streptomyces (strain MSI1/7) from the sediments of Sundarban, Bay of Bengal. Many analogues can be synthesize from 2-allyloxyphenol (2-propenoxy-4-nitro
allyloxyphenol as a food preservative and a diallyloxybenzene, allyloxy benzene and 2-methoxy phenol, 2-phenoxyphenol was found to be inhibitory to 21 bacteria and three fungi. It possess strong antioxidant property determine by 1, 1-diphenyl-2-picryl hydrazyl scavenging activity. Absence of hemolytic toxicity, potential carcinogenicity, cytotoxicity and reports of toxic reactions in literature suggest possible application of 2-phenoxyphenol as a food preservative and an oral disinfectant.

**Cyclopentenone**

Four new cyclopentenone derivatives were derived from endophytic Streptomyces sp. (GT-20026114) from mangrove plant Aegiceras comulactum collected in South China. The cyclopentenone showed a cell growth suppressing action and anticancer action to cancer cells such as human promyelocytic leukemia cells HL-60, human acute lymphoblastic leukemia cells MOLT-3, pulmonary cancers cells A-549, SV40-transformed pulmonary cancer cells WI-38VA13, hepatoma cells Hep G2, colic cancer cells HCT 116, human colic cancer cells SW 480, human colic cancer cells WiDr, stomach cancer cells AGS and myeloma cells. They also act as apoptosis and anticancer agent. Antibacterial property of cyclopentenone may be used as an antisepctic agent for improving preserveability of food and beverages.

**CONCLUSION**

Several studies have been conducted to estimate the medicinal and economic value of mangrove ecosystems to compare the valuation of the mangrove ecosystem all of which differ in a number of ways. The actinomycetes obtained from the mangrove are the potent source of novel bioactive compounds. They are the source of various antibiotics, antimicrobial, antifungal, anticancer, enzymes and other bioactive compounds. Isolation, characterization and study of these actinomycetes from mangrove source can be useful in discovery of novel bioactive compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Source</th>
<th>Activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligninase, Laccase and Manganese Peroxidase.</td>
<td>Streptomyces psammoticus</td>
<td>Lignin degrading enzyme</td>
<td>9</td>
</tr>
<tr>
<td>Benzamides and Quinazolines</td>
<td>Streptomyces sp.</td>
<td>Inhibit Caspase – 3 activity</td>
<td>10</td>
</tr>
<tr>
<td>Alkaline Protease</td>
<td>Streptomyces sp.</td>
<td>Enzymatic activity</td>
<td>11</td>
</tr>
<tr>
<td>L-glutaminase</td>
<td>Streptomyces olivochromogenes (P2).</td>
<td>Enzymatic activity</td>
<td>12</td>
</tr>
<tr>
<td>Chalcomycin B</td>
<td>Streptomyces sp.</td>
<td>Antibiotic</td>
<td>13</td>
</tr>
<tr>
<td>α–galactoside galactohydrolase</td>
<td>Actinomycetes strain AGP-42 and AGP-47</td>
<td>Cleave terminal α–1–6 linked galactose residue from glycoconjugates.</td>
<td>14</td>
</tr>
<tr>
<td>L-asparagine aminohydrolase</td>
<td>Streptomyces parvulus KUAP106</td>
<td>Antitumor and anti neo plastic agent.</td>
<td>15</td>
</tr>
<tr>
<td>Norcardiates A , B and C</td>
<td>Nocardiosis sp. A00203</td>
<td>Antimicrobial and Cytotoxic</td>
<td>16</td>
</tr>
<tr>
<td>Rifamycin</td>
<td>Actinomycetes strain, AM105</td>
<td>Antibiotic</td>
<td>17</td>
</tr>
<tr>
<td>Anthrone and lactones</td>
<td>Actinomycete Strain (N2010-37)</td>
<td>Antitumor and cytotoxic</td>
<td>18</td>
</tr>
<tr>
<td>Xiaomycin</td>
<td>Streptomyces sp. GT2002/1503</td>
<td>Anti-HIV activity</td>
<td>19</td>
</tr>
<tr>
<td>Alkaloids and Quinine</td>
<td>Actinomycetes isolates ACT01 and ACT02</td>
<td>Anticancer</td>
<td>20</td>
</tr>
<tr>
<td>Azalomycin</td>
<td>Streptomyces sp. 211726</td>
<td>Antifungal and cytotoxic</td>
<td>21,22</td>
</tr>
<tr>
<td>2-allyloxyphenol</td>
<td>Streptomyces strain M51/7</td>
<td>Antibacterial</td>
<td>23,24</td>
</tr>
<tr>
<td>Cyclopentenone</td>
<td>Streptomyces sp. (GT-20026114)</td>
<td>Anticancer, apoptosis and antibacterial</td>
<td>25</td>
</tr>
</tbody>
</table>

**Table1. List of Bioactive Compounds produced from various species of mangrove actinomycetes**

**Fig1.** (a) 3-Hydroxyl-2-N-iso-butryl-antranilamide (b) 8-Hydroxy1-2-methyl-(3H)-quinazoline.

**Fig 2.** Chalcomycin B
REFERENCES


26. Wenhua Lin, Liya Li, Hongzheng Fa, Isabel Satller, Xuexi Huang, Susanne Grabley: New Cyclopentenone Derivatives from an Endophytic

Source of support: Nil, Conflict of interest: None Declared