INTRODUCTION

IBD is a chronic inflammatory disease of gastrointestinal tract. It comprises the two conditions, Crohn's disease and ulcerative colitis, characterized by chronic recurrent ulceration of the bowel. Although the exact etiopathogenesis of IBD is still not clear, it appears that there is chronic activation of the immune-inflammatory cascade with transient tethering of leukocytes to the endothelium. This inflammatory response is most likely made possible by defects in both the mucosal immune system and the barrier function of the intestinal epithelium. Sequence of events involving control of infection, resolution of inflammation, differentiation & remodeling are the key processes for the treatment of IBD.

Conventional drugs for colitis treatment include aminosalicylate, corticosteroids, antibiotics & immunomodulators. 5-Amino salicylic acid having side effects in 30% of the patients. Systemic corticosteroids producing incidence of complication is 4.3%. Antibiotic therapy is beneficial in 70% of the patients & immunomodulators having 50 to 70% beneficial effects. This report shows that there is no any appropriate treatment available to treat IBD without side effects. So we are searching for a herbal remedy which will show beneficial effects without side effects in experimentally induced colitis.

H. antidysenterica is a reputed plant in ayurvedic system of medicine; it has Antioxidant, anti-amoebic, antibacterial & anti-diarrhoeal activity. In the light of this the present investigation was undertaken to study the potential of H. antidysenterica in the treatment of inflammatory bowel disease using DNBS induced colitis in rat.

MATERIALS AND METHODS:

Plant material:

H. antidysenterica Wall. (Sym: Kurchi, Family: Apocynaceae) bark sample was collected from commercial supplier (LVG) of Ahmedabad. Bark sample of H. antidysenterica was identified and authenticated by Mr. K.M. Chavda, Lecturer, Department of Biology, Seth L.H. Science College, Mansa, Gujarat, India.

Preparation of extract:

Sufficient quantity of Bark sample of H. antidysenterica was crushed and powdered. After that dried powder (250 gm) of bark was extracted with methanol (70%) using Soxhlet apparatus. After completion of Extraction process, pooled extract was concentrated to dryness to get a solid mass (Percentage Yield Value: 1.8%).

Animals:

Male albino wistar rats weighing 250-300 gm were housed in metabolic cages with free access to standard rat chow (diet) and water ad libitum for one week before the experiment. The experimental protocol was approved by Institutional Animal Ethical Committee as per the guidance of committee for the purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Social Justice and Empowerment, Government of India.

Animals were divided into 5 different groups with 6 animals in each group. Study period for all these groups was 18 days. Group I served as a normal control & received the standard diet throughout the experimental period. Group II served as vehicle control group & received 1.6 ml/kg of 50% ethanol intrarectally. Experimental colitis was induced by 2, 4 - dinitro benzene sulfonic acid (DNBS). Group III, IV & V were received the DNBS 120 mg/kg intrarectally on 1st day. Group III served as model control group. Group IV & Group V were received Standard- Dexamethasone 2 mg/kg, i.p. & methanolic extract of bark sample of H. antidysenterica 400 mg/kg, p.o. respectively for throughout study period of 15 days.
Evaluation of physical, histological and biochemical parameters:
During study total water intake, food intake of each group was measured daily. Animals were sacrificed at the end of study period, colon segment was taken from 10 cm proximal to anus, weighed and scored for inflammatory indices, using the scoring formula of colon mucosa damage index (CMDI) & disease activity index (DAI). Colon samples collected at the end of the study were homogenized & centrifuged to get supernatant which was used to assay Malondialdehyde (MDA), Nitric oxide (NO), Reduced glutathione (GSH), Superoxide dismutase (SOD).

Histopathology:
Sample of colon from one animal of group I, III, IV & V was collected at the end of study for histopathological evaluation. Photomicrograph of the haematoxylin and eisin stained section of rat colon were taken.

STATISTICS
All results were expressed as mean ± S.E.M. p≤0.05 was considered statistically significant. Statistical difference between the means of the various groups were analyzed using one-way analysis of variance

RESULTS & DISCUSSION:
Of the several animal models of intestinal inflammation, the well-characterized hapten reagent 2,4 dinitrobenzene sulphonic acid (DNBS)-induced colitis resembles human IBD in terms of its various histological features including infiltration of colonic mucosa by neutrophils and macrophages and increased production of inflammatory mediators including T helper 1 profile of cytokines. Therefore in the present study DNBS was used for induction of colitis in the rats to determine the effect of Holarrhena antidysenterica on inflammatory bowel disease. DNBS caused mucosal damage, as evident by the increase in CMDI & DAI score as compared to normal control. This increase in CMDI and DAI score was significantly reversed on treatment with Holarrhena antidysenterica (Table 1). Induction of inflammatory bowel disease by DNBS was further supported by decrease in water intake, food intake & increased Colon wt in the model control group animals as compared to the normal control group animals. Holarrhena antidysenterica showed improvement in above physical parameters as compared to the model control group (Table 1). Vehicle control group showed no significant change in histological as well as physical parameters as compared to the normal control group animals.

DNBS model of IBD has been found to be associated with an overproduction of nitric oxide (NO) because of the expression of the inducible isoform of NO synthase (iNOS) in inflammatory focus, NO may react with superoxide anion, resulting in oxidative tissue damage through production of peroxynitrite, which is believed to mediate many of the destructive effects of NO in colon inflammation. Thus NO is responsible for oxidative stress which is associated with increased levels of MPO which catalyses the conversion of proportionally more stable hydrogen peroxide to unstable hydrochlorous acid. Additionally MPO induces neutrophil infiltration on mucosal area causing further damage to the tissue. Malondialdehyde is final product of oxidative stress and is good indicator for extent of oxidative stress. Preventive anti-oxidant, such as superoxide dismutase (SOD) enzyme is the first line of defense against reactive oxygen species. Superoxide dismutase (SOD) is widely distributed in cells with high oxidative metabolism and has been proposed to protect such cells against the deleterious effect of superoxide anion. Reduced glutathione (GSH) is a major low molecular weight scavenger of free radicals in the cytoplasm and an important inhibitor of free radical mediated lipid peroxidation. During oxidative stress, GSH gets oxidized and cannot be regenerated.

In the present study DNBS model control group showed elevated levels of NO, MDA and decreased levels of SOD & GSH as compared to normal control group animals, suggesting the possible role of oxidative stress in the induction of colitis. Treatment with Holarrhena antidysenterica decreased the NO level (Table 2) thus suggesting that reduction in iNOS generation may be among the mechanisms responsible for the anti-inflammatory effect of it. Furthermore Holarrhena antidysenterica treatment also prevents to increase levels of MDA (Table 2). Anti oxidant defenses were strengthened by treatment with Holarrhena antidysenterica as revealed by increase in SOD & GSH levels as compared to the model control group animals (Table 2). The most important microscopic findings in human inflammatory bowel disease are the loss of mucus, crypt abscess and glandular distortion. Photomicrograph of the haematoxylin and eisin stained section of rat colon showed that DNBS significantly affect the cell structure of the colon. There was rupture of Goblet cells, inflammatory damages to the mucosal layers & inflammatory cellular infiltration observed in the colon of DNBS control animals as compared to normal control group animals. These changes were significantly prevented by standard as well as the test drug Holarrhena antidysenterica (Figure 1).

CONCLUSION:
The present study proved the potential effect of methanolic extract of Holarrhena antidysenterica bark in inflammatory bowel disease. It may be due to its antioxidant & anti inflammatory activity.

ACKNOWLEDGEMENT:
Mr. K.M. Chavda, Lecturer, Department of Biology, Seth L.H. Science College, Mansa, Gujarat, India for authentication of Bark sample of Holarrhena antidysenterica. Suvik pharmaceuticals ltd. for providing gift sample of Dexamethasone standard drug.

REFERENCES:
2. V. alin botoman, M.D, Gregory F. Bonner, M.D. Cleveland Clinic Florida, Ft. Lauderdale, Florida , Daniela A. Botoman, M.D., North Broward Hospital District Family Practice Program of the University of South Florida, Coral Springs, Florida, American family physician, January 1, 1998 Vol. 57, No. 1.

Table 1. Effect of Holarrhena antidysenterica on physical & histological parameters

<table>
<thead>
<tr>
<th>Group</th>
<th>Histological parameters(n=6)</th>
<th>Physical parameters(n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMDI (Grade)</td>
<td>DAI (Grade)</td>
</tr>
<tr>
<td>Normal control</td>
<td>0.17±0.17</td>
<td>0.17±0.16</td>
</tr>
<tr>
<td>Vehicle control</td>
<td>0.67±0.21</td>
<td>0.5±0.20</td>
</tr>
<tr>
<td>Model control</td>
<td>3.3±0.21</td>
<td>3.5±0.22</td>
</tr>
<tr>
<td>Std</td>
<td>1.5±0.22*</td>
<td>1.0±0.26</td>
</tr>
<tr>
<td>Test</td>
<td>1.07±0.21*</td>
<td>1.5±0.22*</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.E.M.
* Significantly different from Normal control group at p<0.001. **Significantly different from Normal control group at p<0.05.
Significantly different from DNBS control group at p<0.001. # # significantly different from DNBS control group at p<0.05

Table 2. Effect of Holarrhena antidysenterica on biochemical parameters

<table>
<thead>
<tr>
<th>Group</th>
<th>MDA µg/ml</th>
<th>NO µmoles/ml</th>
<th>GSH µg/ml</th>
<th>SOD U/gm of tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>0.19±0.04</td>
<td>419.37±84.17</td>
<td>298.75±29.47</td>
<td>13.46±2.91</td>
</tr>
<tr>
<td>Vehicle control</td>
<td>0.19±0.02</td>
<td>467.81±101.9</td>
<td>288.25±26.22</td>
<td>13.34±2.26</td>
</tr>
<tr>
<td>Model control</td>
<td>2.0±0.35</td>
<td>1328.21±96.97</td>
<td>104.67±18.53*</td>
<td>3.89±1.66**</td>
</tr>
<tr>
<td>Std</td>
<td>0.32±0.04</td>
<td>624.5±100 8*</td>
<td>237.5±22.32*</td>
<td>12.23±1.84</td>
</tr>
<tr>
<td>Test</td>
<td>0.36±0.05*</td>
<td>558.97±108.4*</td>
<td>204.83±25.88*</td>
<td>9.81±1.92*</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.E.M.
* Significantly different from Normal control group at p<0.001. **Significantly different from Normal control group at p<0.05.
Significantly different from DNBS control group at p<0.001. # # significantly different from DNBS control group at p<0.05

Figure 1: Histopathology of isolated colon

A: Normal control group showed intact epithelial surface: ×100.
B: Model control group showed massive necrotic destruction of epithelium, submucosal oedema, haemorrhage and inflammatory cellular infiltration: ×100.
C: Dexamethasone treated group: ×100
D: Holarrhena antidysenterica treated group showed protective action against DNBS induced damage: ×100

Source of support: Nil, Conflict of interest: None Declared

IRJP is an official publication of Moksha Publishing House. Website: www.mokshap.com. All rights reserved.