METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF ATENOLOL IN TABLET DOSAGE FORM BY RP-HPLC METHOD

Panthagada Sunitha*1, Kancherla Satyavathi2, Kandibothi Lavanya1, Appapurapu Anil Kumar2, Gutta Subbarao3
1Department of Pharmaceutical Analysis And Quality assurance, Koringa College of Pharmacy, Korangi, Tallarevu Mandal, East Godavari District, Andhra Pradesh, India
2Dept. of Pharmaceutical Analysis and Quality assurance, A.S.N Pharmacy College, Burripalem Road, Tenali, Guntur (dt), Andhra Pradesh, India
3Dept. of Pharmaceutical Analysis and Quality assurance, Sri Siddartha Pharmacy College, Nuzvid, Krishna (dt), Andhra Pradesh, India

ABSTRACT
A simple, rapid, precise and accurate reverse phase high performance liquid chromatography has been developed and validated for the estimation of Atenolol in tablet formulations. Separation was carried on Waters e 2695 Isocratic HPLC system separation module with EMPOWER 2 software, PDA detector waters 2998 and INERSIL ODS C18 analytical column, (4.6 x 250* 5µm), was operated in isocratic mode using water and acetonitrile (50:50v/v) as mobile phase at a flow rate of 1.2 ml/min with detection wavelength of 228 nm, by an injection volume of 20 µl and entire separation was carried out at an ambient temperature for the HPLC system. The linearity was found in the range of 50-150 µg/ml and showed a correlation coefficient of 0.9981. The retention time of Atenolol was found to be 1.2. This study concluded that the proposed method was found to be accurate, reproducible, and consistent. The proposed method can be effectively used for the routine analysis of the drug in marketed formulations.

KEY WORDS: Atenolol, RP-HPLC, Method Development, Validation.

INTRODUCTION
Atenolol (ATN) is chemically 1, 2-[4-[(2 RS)-2-hydroxy-3-(1-methyl ethyl) amino] propoxy phenyl] acetamide (Fig 1), it is a beta adrenergic blocker for the treatment of hypertension and acts by lowering the systolic and diastolic blood pressure by 15 to 20% in a single drug treatment. The important analytical functional groups present in Atenolol are hydroxyl, aminopropoxy, acetamide, and the literature surveyed suggested carrying out the separation in Reverse mode2. There are no specified and selective method for the estimation of Atenolol and a very few methods are available for the simultaneous estimation of ATN which include Simultaneous UV spectrophotometric methods for estimation of atenolol and almidipine besylate in combined dosage form3, Analytical method development and Validation of Losartan Potassium and Atenolol in combined dosage form by RP-HPLC3. From the validated data as per ICH guidelines the proposed method is simple, rapid, precise accurate and economic for Atenolol and this method can be effectively used for the routine analysis of these drugs in marketed formulations6.

![Figure 1 Structure of Atenolol](image)

MATERIALS AND METHODS
Atenolol is given by Lyka laboratories, Mumbai. Atenolol, brand names of Atenolol Atormin(PCI pharmaceuticals limited),Benol-50(Indica laboratories PVT LTD),Tenormin(CIPLA,RANBAXY,ZYDUS) all are containing 50 mg of Atenolol were obtained from local pharmacy. Water used was of HPLC grade, Methanol was of analytical grade. The instruments used were waters electronic balance, Elico pH meter, Soltex ultra sonicator, Waters e 2695 Isocratic HPLC system separation module EMPOWER 2 software, PDA detector waters 2998 and Analytical column was INERSIL ODS C18, (4.6 x 250* 5µm).

METHODOLOGY DEVELOPMENT
Preparation of Standard and Sample solutions
Procedure for Calibration curve of Atenolol
Accurately weighed quantity of 100 mg of Atenolol was dissolved in 100 ml volumetric flask with the mobile phase water and acetonitrile (50:50v/v). From this stock solution, concentrations of 50, 75, 100, 125 and 150 µg/ml solutions were prepared and constructed the calibration curve at a detection wavelength of 228 nm, which was used for estimation of marketed samples (Fig 3).

Assay Procedure for Sample Solution preparation:
Accurately weighed quantity of equivalent powder of 50 mg of Atenolol from 20 tablets of different tablets was dissolved in mobile phase water and acetonitrile (50:50v/v) in 100 ml volumetric flask and further diluted to fall in working range concentration for the estimation by using the calibration curves.

METHOD VALIDATION
The proposed method was validated according to ICH guidelines in terms of parameters like Accuracy, Precision, Specificity, Linearity, LOD, LOQ etc.

System Suitability Parameters
For system suitability, five replicates of standard solutions of Atenolol injected studied the suitability parameters like Plate number (N), Resolution (R) and Relative retention time (α), and Peak symmetry of samples (As) were studied with the help of standard chromatograms (Table 1).

Linearity and Range
The linearity of calibration curves (analyte to peak area ratio Vs concentration) in pure solution was checked over the concentration ranges of 50-150 µg/ml for Atenolol. The linearity was evaluated by linear regression analysis, using least squares method. The calibration curves were linear in the...
studied range and equations of the regression analysis obtained for Atenolol \(Y = 31752 X + 60498 \). Correlation coefficient values for Atenolol found to be 0.9981 (Table 2).

Accuracy

To study reliability, suitability and accuracy of the method, recovery studies were carried out, by adding a known quantity of the standard to the pre analyzed sample. The recovery was carried out at 50%, 100%, 150% level and the contents were determined from respective chromatogram. From the results obtained we conclude that the method was accurate (Table 3).

Precision

The Precision of test method was done by performing assay on five replicate determination of sample preparation at test concentration level (as per method of analysis) and calculated relative standard deviation of assay results. Five injections from standard solutions were injected and the peak areas were obtained and %RSD was calculated (Table 4).

Limit of Detection

Limit of detection is the lowest concentration of the analyte that can be detected by injecting decreasing amount, not necessarily quantity by the method, under the stated experimental conditions. The minimum concentration at which the analyte can be detected was determined from the linearity curve by applying the formula (Table 1).

\[
\text{LOD} = 3.3 \, \text{SD/slope.}
\]

Limit of Quantitation

Limit of quantitation is the lowest concentration of the analyte in a sample that can be estimated quantitatively by injecting decreasing amount of drug with acceptable precision and accuracy under the stated experimental conditions of the method. Limit of quantitation can be obtained from linearity curve by applying the following formula (Table 1).

\[
\text{LOQ} = 10 \, \text{SD/ slope.}
\]

RESULTS AND DISCUSSION

The Separation was carried on Waters e 2695 Isocratic HPLC system separation module with EMPOWER 2 software, PDA detector waters 2998 and INERSIL ODS C18 analytical column, (4.6 x 250* 5µm), was operated in isocratic mode using water and acetonitrile (50:50v/v) as mobile phase and at a flow rate of 1.2 ml/min with detection wavelength of 228 nm, by an injection volume of 20 µl and entire separation was carried out at an ambient temperature for the HPLC system. Under the described experimental conditions, sharp peaks that belong to Atenolol were obtained at retention time of 1.2 min. System suitability studies were carried out in which the resolution between the peaks, tailing factor and number of theoretical plates were found and are presented (Table 1). The Linearity (Table 2) was obtained in the concentration range 50 to 150 µg/ml for Atenolol, with correlation coefficient of 0.9981. The Accuracy of the method was determined by performing recovery studies at 50%, 100%, etc.
150% were found to within the limits (Table 3). The precision of the method was also found to be good (Table 4). The Limit of Detection (LOD) and Limit of Quantitation (LOQ) of the developed method were determined by injecting progressively low concentrations of the standard solutions using the developed RP-HPLC method (Table 1).

CONCLUSION
This study concluded that the proposed method was found to be accurate, reproducible, and consistent and could be effectively used for the routine analysis of these drugs in marketed formulations.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared