INTRODUCTION

Eclipta alba (L.) Hassk commonly known as False Daisy and bhringraj, is a plant belonging to the family Asteraceae. It is also named 'kehraj' in Assamese and karisalankanni in Tamil. It is a perennial herb usually found spreading easily in moist tropical countries. The branches are hairy, reddish brown and can grow up to 40 cm high. The roots are found growing at the thickened nodal points. The leaves are opposite, lance like with a toothed edge and hairy. When the leaves are cut with iron knife, it turns the sap black. The flowers are white, small and arranged in small clusters. The flowering stalk arises from the axis of the leaf. The dry fruit is formed by fusion of two carpels, which do not break open and each has just one seed. Root well developed, cylindrical and grayish.

Distribution

Eclipta alba L. occurs throughout the whole of India. It is widely distributed throughout India, China, Thailand, and Brazil. It is common in waste places, marshy lands, hedges and roadsides, particularly in the more tropical parts of the country. It is also found in other eastern countries including Indonesia, Sri Lanka, Philippines, Nepal and Malaysia where it grows well in clay and moist ground-bunds, paddy fields, water courses, tanks, both in the plains and the hilly regions.

Traditional Uses

Eclipta alba Linn. has been traditionally used for blackening, promoting hair growth and strengthening the hair. It is believed by some people that if it is taken internally as well as applied externally the hair will eventually hair black. As a dye it has also been used in tattoos. In Ayurveda medicine, the leaf extract is considered a powerful liver tonic and rejuvenative. It has traditional external uses, like athlete foot, eczema and dermatitis, on the scalp to address hair loss and rejuvenative.

Pharmacological activities of Eclipta alba

Analgesic activity

Analgesic effect was studied on albino mice using ethanolic and alkaloidal extract of Eclipta alba. Standard experimental models such as the tail clip method, the tail flick method and the acetice acid induced writhing response were used which showed both the ethanol extract as well as the total alkaloids produced good analgesic activity in all the different models of analgesia used. The total alkaloidal fraction was the most effective in all models tested.

Anti-aggression activity

It was investigated the ability of 100 and 200 mg/kg of aqueous extract of Eclipta alba to circumvent aggression. Foot shock induced aggression and water competition test were utilized as models for screening of antiaggressive activity. Eclipta alba significantly minimized dominance (p<0.05) which was correlated to the level of aggression particularly with 200mg/kg in the water competition test. A tangible behavioral submission was observed with 100 and 200 mg/kg and of Eclipta alba in the foot shock induced test.

Anti-bacterial activity

The antibacterial potential of aerial parts extracts of Eclipta alba was studied in solvents like acetone, ethanol, methanol, aqueous and hexane against selected gram positive and gram negative bacteria.
negative bacterial species. The antibacterial studies were done by agar well diffusion methods. The hexane extract of Eclipta alba showed high antibacterial activity against S. aureus, B. cereus, E. coli, S. typhi, K. pneumoniae, S. pyogenes and P. aeruginosa, whereas acetone, ethanol, methanol and aqueous extracts showed intermediate activity against S. aureus, B. cereus, E. coli, S. typhi, K. pneumoniae, P. aeruginosa, P. mirabilis and S. pyogenes.

Anticancer activity

The hydroalcoholic extract of Eclipta alba was used as an anticancer agent using HepG2, C6 glioma and A498 cell lines as model system. Antiproliferative and cytotoxic effects of the Eclipta alba hydroalcoholic extract (EAE) was determined using MTT assay. The expression level of NF-κB was analysed by western blotting and RT PCR. Gelatin zymography was done for gelatinase matrix metalloproteinases (MMP-2 and 9) analysis. EAE inhibited the cell proliferation in dose dependent manner in HepG2, A498 and C6 glioma cell lines with an IC50 of 22±2.9, 25±3.6 and 50±8.7 μg/ml, respectively. The expression of MMP (2 and 9) was down-regulated with EAE treatment. DNA damage was observed following 72h of extract treatment, leading to apoptosis.

Antidiabetic activity

Leaf suspension of Eclipta alba (2 & 4g/kg) orally in alloxan induced diabetic rats resulted in reduction in blood glucose level, glycosylated hemoglobin. There was decreased activity of glucose-6-phosphatase and fructose1,6-bisphosphatase, and an increase in the activity of liver hexokinase. Thus oral administration of Eclipta alba suspension possess potent antihyperglycemic activity. Eclipta alba as an ingredient in polyherbal formulation Pan-five were scientifically and clinically proved to possess antidiabetic and diuretic activity by acting upon pancreas by restoration and regeneration of pancreatic β-cell activity.

Anti-helmenthic activity

The study was carried out to investigate the anthelmithic potential of methanolic extract of whole plant of Eclipta alba (L.) Hassk against Pheretima posthuma as a species of earthworm. Various concentrations (25-100 mg/ml) of methanolic extract were evaluated for anthelmithic activity by recording the time required for paralysis and death of worms. Albendazole was used as standard. Results indicated that methanol extract significantly (p<0.01) exhibited paralysis at lower doses of 50, 75 and 100 mg/ml and causes death of worms at doses of concentrations 75 and 100 mg/ml when compared with standard.

Anti-hepatotoxic properties

The effect of Eclipta alba (EA) extract was studied on paracetamol induced hepatic damage in mice. Upon the treatment with 50% ethanol extract of E.alba (100 and 250 mg/100g body weight) was found to protect the mice from hepato-toxic action of paracetamol as evidenced by significant reduction in the elevated serum transaminase levels and the histopathological studies showed marked reduction in fatty degeneration and centrinzonal necrosis, in animals receiving different doses of E.alba along with paracetamol as compared to the control group. It was confirmed that the extract treated groups were partially protected from hepato-cellular damage caused by paracetamol.

Anti-inflammatory activity

Albino wistar rats were used to investigate anti-inflammatory activity in which methanolic extract was administered orally. 100 and 200 mg/kg showed significant anti-inflammatory activity in carrageenin and egg white induced hind paw edema in rats which was compared with indomethacin (10 mg/kg) and ciproheptadine (8 mg/kg).

Hair growth promoter activity

The methanol extract of Eclipta alba promotes hair growth by inducing anagen in telogen (resting) phase hair follicles. Animals treated with 3.2 mg/15 cm² of methanol extract of Eclipta alba showed better efficacy as compared to lower doses. The activity was assessed by studying the melanogenesis in resected skin, follicle count in the subcutis, skin thickness and surrogate markers in vehicle control and extract treated animals. Thus they suggested that methanol extract of Eclipta alba had potential as a hair growth promoter.

Memory enhancing activity

The suspension of Eclipta alba containing 100 and 200 mg/kg was administered in rats to evaluate Transfer Latency (TL) on an elevated plus maze. TL was a measure of acquisition and retrieval learning. Mice were placed at the center of open field apparatus to assess spatial habitual learning, observed for 20 minutes for rearing and time spent during rearing using varied doses for 30 minutes, 24 hours and 96 hours and 144 hrs. The results revealed significant improvement of retrieval memory.

CONCLUSION

This review presents some phytochemicals and detailed pharmacological information of Eclipta alba. The review of pharmacological studies suggests that the traditional uses of the plant are scientifically valid. Researchers are exploring the therapeutic potential of this plant as it has more therapeutic properties which are not known.

ACKNOWLEDGEMENTS

The authors are thankful to Dr Manik Sharma Principal Bhoj Mahavidyalaya Bhopal for providing necessary facilities and encouraging us throughout the work We thank him for the freedom of thought, trust and expression which he bestowed upon us. We are greatly thankful to our friends for their valuable help.

REFERENCES

6. Mithun N.M. and Dr. Shashidhara S Eclipta alba (L.) A review on its phytochemical and pharmacological profile: 2008; Pharmacutator-art-1002

Page 52


Source of support: Nil, Conflict of interest: None Declared