

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

www.irjponline.com ISSN 2230 – 8407

Review Article

INTRACELLULAR CALCIUM OSCILLATIONS IN EXCITABLE AND NONEXCITABLE CELLS: A REVIEW

Manash Barthakur *1 & Jitendra Goswami 2

¹Department of Zoology, Pub Kamrup College, Baihata Chariali, Assam, India

²Department of Physiology, CVSc, AAU, Khanapara, Guwahati, India

*Corresponding Author Email: ritmoni@rediffmail.com

Article Received on: 26/06/18 Approved for publication: 29/07/18

DOI: 10.7897/2230-8407.097123

ABSTRACT

Calcium level in a cell controls different activities of a cell. The role of free calcium ion in the cytosol of excitable and non-excitable cells is different. Excitable cells like a neuron, muscle cell, and astrocyte control different physiological activities including neurotransmitter, glia transmitter release, apoptosis and necrosis etc while in non-excitable cell calcium causes the release of important chemicals like histamine. In excitable cells, secretory functions are regulated by direct entry of calcium into the cytoplasm while in non-excitable cells release of calcium from intracellular storage that may modulate the second messenger and the secretion is via second messenger system. Molecular study on calcium oscillation pattern in the different living cell indicates frequency and amplitude characteristics. Intracellular communication between neighbouring cells also takes place through calcium. In brain and other nervous tissue, cellular communication between neuron and astrocyte take place through calcium oscillation signal.

Keywords: Calcium oscillation, excitable cell, non-excitable cell.

INTRODUCTION

Calcium is a regulating factor of different activities of the cell. Periodic protein kinase c activation is required for initiation of calcium oscillations¹. Intracellular calcium is found in attached and free form. Free cytosolic calcium regulates different cellular functions including contraction, neurotransmitter, hormone release, metabolism, cell division, and differentiation. Changes in cytosolic calcium level alteration are observed in the cell under different stress ². Calcium ions are present inside the cell either free or binding with proteins. In the different compartment of a cell, calcium ions are stored, and upon stimulation the calcium ions are released to the cytoplasm. Most of the calcium ions inside the cells are present in the endoplasmic reticulum and mitochondria. Inside the endoplasmic reticulum, calcium ions are distributed heterogeneously due to unequal distribution of calcium binding protein³. Calcium is a divalent ion and can bind with different proteins. Calcium in free form is dangerous for a living cell and so chelating of calcium ion is very important. Chelation of calcium ions is performed by proteins present in the cytoplasm, mitochondria, and endoplasmic reticulum. Most of the cellular energies are utilized by the cell to lower the calcium level in cytosol³. The present analysis is focusing on the calcium oscillation pattern in different excitable and non-excitable cells and their importance in controlling different cellular functions.

Baseline intracellular calcium and calcium oscillation

Calcium oscillations following application of different toxic chemicals shows the elevation shortly and returns to baseline level and remains for prolonging. However, all the neurons do not respond excite-toxic effect but in case of responding cell the calcium level elevated and return to normal level does not mean the cell will survive. The cell may struggle to maintain calcium homeostatic equilibrium and reported that cells are vulnerable for second time excitotoxic exposure⁴. Earlier work on calcium oscillation and baseline calcium study reports that after first exposure of toxic agents most of the responding neurons show higher basal calcium level and these cells will not respond for second time toxic insult. It is also believed that the non-responder neurons may be a very fast responder and calcium level returns to basal calcium level before measurement of calcium signal.

Feedback control of intracellular calcium level

Living cells have the capacities to control the calcium level and overload of intracellular calcium is regulated by negative feedback mechanism where calcium entry is blocked by calcium channel ⁵. Interestingly it is observed that protein kinase c causes the elevation of intracellular calcium level in molluscan neuron while the same enzyme reduces the calcium level in dorsal root ganglion neuron in chick ⁶.

In hypoxic condition

In hypoxia, there is an elevation of intracellular calcium level. In hypoxia, due to a lower level of oxygen, the cell initiates the glycolysis for production of ATP. For glycolysis, required glucose molecules are transported through sodium glucose co-transporter that activates the sodium-calcium exchanger finally calcium influx ⁷. Depletion of oxygen level and increase in the intracellular calcium in the cell causes the synthesis of some intracellular intermediates that may cause the cellular inflammation.

COMPARISON BETWEEN CALCIUM OSCILLATION WAVES WITH A PHYSICAL WAVE

The Calcium oscillations follow the characteristics of the physical wave

Changes of free calcium ions in the cytoplasm occur continuously and these oscillations can be considered as a waveform. These calcium waves follow some of the characteristics of a physical wave characteristic like wavelength, frequency, phase shift and amplitude. The wave follows the energy equation of physical wave 8 .

Calcium oscillations can be analyzed with mathematical equations

Mathematics is a tool for analysis of different scientific records. Calcium oscillations can be analyzed with fractional calculus and linear equations. Different mathematical models are proposed by the different workers to analyzed calcium oscillations in excitable and non-excitable cells ⁸.

Previously it was observed that depolarization evokes strong calcium rises in the axonal varicosities but not in the somatodendritic compartment in neurons ⁹.

THE BIOLOGICAL IMPORTANCE OF INTRACELLULAR CALCIUM OSCILLATIONS

Intracellular calcium oscillation regulates genetic function

Gene transcription and translation in neurons are regulated by the influx of intracellular calcium ¹⁰. Although calcium associated gene expression depends upon the calcium entry however the calcium influx through different route is not equivalent. Transcription of a brain-derived neurotrophic factor is strongly induced by calcium influx through L VSCCs on the other hand weekly stimulated by NMDA receptors ¹¹.

Mitochondrial membrane potential alteration can induce elevation of intracellular calcium level

Decrease in mitochondrial membrane potential causes release of calcium ion from mitochondria via mitochondrial sodiumcalcium exchanger

Calcium oscillation inside the cell is directly proportional to the Endoplasmic reticulum

The amount of Ca^{2+} in the ER is directly related to the Ca^{2+} load, and one model predicts that Ca^{2+} oscillations will also be highly sensitive to ER Ca^{2+} concentration ¹².

Intracellular calcium oscillations regulate electrical activity of a neuron

Earlier it has been reported that the intracellular calcium signal indicates the electrical activities neuronal signalling in neurons ^{13, 14}.

Calcium dynamics in Cell

Study on calcium dynamics in a living cell under different stimulants have shown that the calcium level returns to the baseline level within a short period¹⁵. Static measurement of intracellular calcium is although helpful to study the condition of the cell but it will not indicates the proper physiological status of the cell so, calcium dynamics in the intracellular level is most

important to predict the status of the cell with calcium homeostasis mechanism.

The velocity of a calcium wave is measured 0.1 to 1 micrometer per second at slow state while at fast wave velocities goes up to 10 to 50 micrometer per second 16 .

Calcium oscillation may be monophasic or biphasic

Researcher observed that calcium oscillation in some cells showed biphasically. The initial peak is the longer duration and is followed by a short duration second peak. The biphasic calcium transient of a non-excitable cell is maintained by internal storage and influx from extracellular media. The rate of calcium decay was shown to relate to the rate of calcium cycling across the plasma membrane. Calcium cycling across the plasma membrane and calcium decay depend upon the cell excitation and elevated level of cytoplasmic calcium ¹⁷. Biphasic calcium oscillation peaks are also observed in cells stimulated by histamine. The initial peak is followed by a small peak of calcium oscillation in non-excitable cells treated with histamine.

BASELINE FLUORESCENCE INTENSITY IN CULTURED NEURON

Calcium oscillation in a cell follows some basic nature. Intracellular calcium oscillation is not influenced by extracellular calcium influx ¹⁸. It is observed that there is no intracellular calcium alteration after blocking voltage-gated calcium channel.

Physical factors can alter calcium oscillation

The magnetic field can influence the elevation of intracellular calcium transient in non-excitable cells¹⁹. Calcium efflux from the cultured cells is observed when the cells are exposed to high-frequency radiation. In stem cell research calcium oscillation modulation is applied to differentiation of human mesenchymal stem cell to divide and differentiate to osteoblast cell²⁰. ²¹

Nano-particles can change the intracellular calcium level

Different nano-particles can change the intracellular calcium level through activation of intracellular machinery. In cancer therapy, nano-particls are used to kill the malignant cells ²². Mitochondrial calcium leakage and mitochondrial polarization are the causes of cellular death caused by nano-particles in neurons ²³. One of the mechanisms of the killing of the cancerous cell by nano-particle is through elevation of intracellular calcium level. One study reported that after 48 hours of nano-particle treatment, cytosolic calcium level increases 1.8 times in adenocarcinoma cells ²⁴.

Calcium oscillations in Astrocytes

Calcium oscillations in astrocyte is a very complex mechanism and neuron astrocyte communication is regulated by calcium oscillation pattern²⁵.

Calcium oscillations in other non-excitable Cells

Calcium oscillations are also studied in haepatocytes and other non-excitable cells. In haepatoctes, calcium oscillations occur in a synchronized way and distributed among all the haepatocytes of a liver. The junctional complex is also important for synchronized calcium wave distribution. But in absence of junctional complex, the individual cell shows different calcium oscillations and synchronization is lost ²⁶. Calcium oscillations in haepatocytes are mainly induced by hormones. Different calcium sensor molecules are present in the cell that regulates the intracellular calcium oscillations and calcium storage in the endoplasmic reticulum. Scientists have reported that stromal interacting molecule 1 is a calcium sensor that regulates calcium storage in the endoplasmic reticulum of haepatocytes²⁷. Recent work on the importance of intracellular calcium on the regeneration of haepatocytes indicates that cytosolic calcium is a major regulator of regeneration of liver cell. Besides, nuclear calcium and mitochondrial calcium play a critical role in haepatocyte regeneration and cell cycle.²⁸.

Different stimulus able to generate calcium oscillations in astrocyte and activates calcium oscillations in neighbouring astrocyte via gap junctions ²⁹. In neurons, calcium oscillation is triggered by neighbouring astrocytes. The signal passes from astrocytes to neurons through gap junction communications ³⁰ or calcium-dependent release ³¹.

Calcium oscillations in excitable and non-excitable cells show the different pattern. In excitable cells the calcium oscillation pattern is nonlinear. In some cells, calcium oscillation regulates some cytoplasmic domain only while in some other cases calcium oscillations propagate to neighbouring cell ³².

One type of calcium oscillation, baseline spiking, in which there is a discrepancy in calcium spikes with frequency but not amplitude,. Calcium oscillation frequency is closely associated with the energy utilization.

Calcium oscillation and calcium decay

Exponential calcium decay is very important for the survival of a cell because prolong intracellular calcium at higher level leads initiation of death signal. It is observed that calcium oscillation depends upon the energy level of a cell. The healthy living cell can maintain a proper intracellular calcium level and after elevation can bring to sustain level using ATP. Glucose derived cell unable to maintain the calcium level due to lower ATP production. Different channel proteins are responsible for calcium transport requires ATP and maintain calcium at level baseline calcium. Calcium decay in a cell depends upon the sodium level of the extracellular media. Sodium-calcium exchanger system has an influence on cytosolic calcium decay process. Increase in calcium level in the active zone of a neuron clearly indicates the association between calcium level and secretion. After exocytosis calcium decay starts in the active zone area 33.

Neuron and Astrocyte communicate with each other through calcium signal

Both excitable and non-excitable cells communicate with each other through calcium oscillations. The calcium spike which is generated in one cell transmits to another cell through gap junction. Stimulation of neural through glutamate receptor causes elevation of intracellular calcium in neuron and long lasting oscillation in Astrocytes in neuron and astrocyte co-culture. Intracellular calcium oscillation in astrocyte closely associates with the neuronal function. Stimulation of afferent point of a neuron activates the elevation of calcium level in the cytoplasm and releases glutamate that can activate the release of calcium level in astrocytes. The calcium oscillation pattern is not unidirectional, rather it is a bidirectional communication between astrocytes and neuron ³⁴.

Cytoplasmic free energy and calcium oscillations

Cytosolic calcium level has a close association with free energy. Decreasing free energy in a cell cytoplasm there is also a decrease in sodium level in the cytoplasm while the calcium level elevated and calcium peak is found after 30 seconds. It is also observed that decrease in extracellular sodium level and increase in intracellular potassium level following depolarization causes increase in intracellular calcium level. There is an acceleration of intracellular calcium decay in an exponential way was observed after restitution of extracellular sodium ³⁵.

Extracellular chemicals and ions are the regulator of Intracellular calcium oscillation

Synchronized intracellular calcium oscillations in a cell also observed under oscillation of extracellular insulin ³⁶. Excitable cells have the sodium leakage channels that cause the changes in intracellular ionic concentration including calcium oscillations ³⁷. Calcium enters into the cell after repetitive stimuli and calcium oscillates inside the cells and leads pathophysiological effect.

Intracellular calcium oscillation and communication between neighbouring cells are studied and observed a different pattern of calcium oscillation and extracellular physical factors can modify the calcium oscillation patter³⁸. Non-excitable cell-like mast cell release histamine in presence of immunoglobin g (IgG). The release of histamine is calcium-dependent. Elevation of free intracellular calcium has a close association with the secretion of histamine. But the calcium elevation within physiological limit is unable to release histamine. Additional stimulatory pathways can trigger the histamine release ³⁹.

Calcium Oscillation wave follow the wave equation

Wavelength and frequency are inversely proportional as observed in electromagnetic wave and the same character also observed in calcium wave of a cell. Spatiotemporal characteristics of calcium oscillation wave also show the characteristic of a traveling wave.

Calcium oscillations in adipocytes are studied and reported that adipocyte stimulated by aceyle choline causes the elevation of intracellular calcium in absence of extracellular calcium indicated the possibility of release of calcium from intracellular storage ⁴⁰.

CONCLUSION

Fine tuning of intracellular calcium oscillation is very important for proper functioning of a cell as the most of the intracellular mechanism is regulated by intracellular calcium level of a cell. It is observed that elevation of intracellular calcium is the primary response in excitable and non-excitable cells to initiate a function. Even death signals also are initiated by elevation of intracellular calcium. Intracellular calcium sensor also plays a major role in calcium homeostasis in the cytoplasm. Studies on calcium oscillation pattern in different cells reveal the information that the wave characteristics of calcium oscillation wave follow the same basic wave characteristics of the radio wave. Though different extracellular chemicals can change the calcium oscillations through activation of different receptors high-frequency radiation and magnetic field can change the calcium oscillation pattern. After discussing the different mechanism of calcium oscillations in the excitable and non-excitable cell it is clear that calcium oscillation is dose and time-dependent phenomenon and can be modulated by different receptor blockers and extracellular ionic concentration. So, modulation of calcium oscillation pattern is possible with the help of different mechanisms to treat the cell. Mathematical model can be developed to predict calcium

oscillation patter to apply different therapeutic agents for disease treatment.

REFERENCES

- Franca Codazzi, Mary N. Teruel and Tobias Meyer. Control of astrocyte Ca2 oscillations and waves by oscillating translocation and activation of protein kinase C. Current Biology 2001; 11:1089–1097. https://doi.org/10.1016 /S0960-9822(01)00326-8
- Rola Barhoumi, Yongchang Qian, Robert C. Burghardt, and Evelyn Tiffany-Castiglioni. Image Analysis of Ca2+ Signals as a Basis for Neurotoxicity; Assays: Promises and Challenges. Neurotoxicol Teratol 2010; 32(1): 16. doi:10.1016/j.ntt.2009.06.002 https://doi.org/10.1016/j.ntt.2009.06.002
- David. E. Clapham: Calcium Signaling. Cell 2007; 131 (14): 1047-1058. PMid:18083096
- Dubinsky JM. Intracellular calcium levels during the period of delayed excitotoxicity. J. Neuroscience 1993; 13(2): 623-631. https://doi.org/10.1523/JNEUROSCI.13-02-00623.1993 PMid:8093901
- Eckert, R. & Chand, J. E. Inactivation of Ca channels. Prog. Biophys molec Biol. 1984;44, 215-267. https://doi.org/ 10.1016/0079-6107(84)90009-9
- Rane, S. G. & Dunlap K. Kinase C activator 1,2oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc. Natn. Acad. Sci. U.S.A. 1986; 83: 184-188 https://doi.org/10.1073/pnas.83.1.184 PMid:2417236
- Berna N, Arnould T, Remacle J, Michiels C. Hypoxiainduced increase in intracellular calcium concentration in endothelial cells: role of the Na(+)-glucose co-transporter. J Cell Biochemistry 2001; 84(1):115-131. https://doi.org/ 10.1002/jcb.1271 PMid:11746521
- Barthakur Manash. Impact of gold nano-particles on electrophysiology and intracellular calcium in cultured neuron. Research Journal of Life science, Bioinformatics, Pharmaceuticals and Chemical Sciences 2018; 4 (3): 29-39.
- Llano I, Tan YP, Caputo C. Spatial heterogeneity of intracellular Ca2 signals in axons of basket cells from rat cerebellar slices. J Physiol 1997; 502: 509–519. https://doi.org/10.1111/j.1469-7793.1997.509bj.x PMid:9279804 PMCid:PMC1159524
- Anne E.West, Wen G. Chen, Matthew B. Dalva, Ricardo E. Dolmetsch, Jon M. Kornhauser, Adam J. Shaywitz, Mari A. Takasu, et. al. Calcium regulation of neuronal gene expression. PNAS 2001; 98 (20): 11024-11031 https://doi.org /10.1073/pnas.191352298 PMid:11572963 PMCid:PMC58677
- A Ghosh, J Carnahan, ME Greenberg. Requirement for BDNF in activity-dependent survival of cortical neurons. Science. 1994; 263 (5153): 1618-1623. https://doi.org/ 10.1126/science.7907431 PMid:7907431
- J Sneyd, K. Tsaneva-Atanasova, D. I. Yule, J. L. Thompson, and T. J. Shuttleworth. Control of calcium oscillations by membrane fluxes PNAS 2004; 101 (5): 1392-1396. https://doi.org/10.1073/pnas.0303472101 PMid:14734814 PMCid:PMC337063
- Garaschuk O, Milos R, Grienberger C, Marandi N, Adelsberger H, Konnerth A. Optical monitoring of brain function in vivo: from neurons to networks. Pflügers Arch 2006; 453: 385–396. https://doi.org/10.1007/s00424-006-0150-x PMid:17047983
- Grewe BF, Helmchen F. Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 2009; 19: 520–529. https://doi.org/10.1016/j.conb.2009.09.003 PMid:19854041

- Barhoumi R, Burghardt RC, Qian Y, Tiffany-Castiglioni E. Effects of propofol on intracellular Ca2 + homeostasis in human astrocytoma cells. Brain Res 2007; 1145:11–8. https://doi.org/10.1016/j.brainres.2007.01.118 PMid:17328872
- 16. Jaffe LF, Creton R. On the conservation of calcium wave speeds. Cell Calcium 1998; 24:1–8 https://doi.org/10.1016 /S0143-4160(98)90083-5
- Korngreen, V. Gold'shtein, and Z. Priel. A Realistic Model of Biphasic Calcium Transients in Electrically Nonexcitable Cells. Biophysical Journal 1997; 73: 659-673. https://doi.org /10.1016/S0006-3495(97)78101-3
- Tong-fei Wang, Chen Zhou, Ai-hui Tang Shi-qiang Wang & Zhen Chai. Cellular mechanism for spontaneous calcium oscillations in astrocytes. Acta Pharmacologica Sinica 2006; 27: 861-868. https://doi.org/10.1111/j.1745-7254.2006.00397.x PMid:16787570
- H E Wey, D P Conover, P Mathias, M Toraason, and W G Lotz. 50-Hertz magnetic field and calcium transients in Jurkat cells: results of a research and public information dissemination (RAPID) program study. Environ Health Perspect. 2000; 108(2): 135–140. https://doi.org/10.1289/ ehp.00108135 PMid:10656853 PMCid:PMC1637897
- Sun S, Liu Y, Lipsky S, Cho M. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 2007; 21(7):1472-80. https://doi.org/10.1096/fj.06-7153com PMid:17264165
- Blackman CF, Benane SG, Joines WT, Hollis MA, House DE. Calcium-ion efflux from brain tissue: power-density versus internal field-intensity dependencies at 50-MHz RF radiation. Bioelectromagnetics.1980; 1(3): 277-83. https://doi.org/10.1002/bem.2250010304 PMid:7284026
- Akira Onoderaa, Katsutoshi Yayamaa, Hideto Morosawaa, Yukina Ishiia, Yasuo Tsutsumib, Yuichi Kawaia. Reduction of calcium flux from the extracellular region and endoplasmic reticulum by amorphous nano-silica particles owing to carboxy group addition on their surface. Biochemistry and Biophysics Reports 2017; 9: 330–334. https://doi.org/ 10.1016/j.bbrep.2017.01.014 PMid:29114587 PMCid:PMC5632705
- 23. H. L. Nyitrai, I. Héja, I. Jablonkai. Polyamidoamine dendrimer impairs mitochondrial oxidation in brain tissue. J. Nanobiotechnology 2013; 11: p. 9. https://doi.org/ 10.1186/1477-3155-11-9 PMid:23556550 PMCid:PMC3630003
- 24. J. Wang, X. Fang, W. Liang. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano; 2012, 6: 5018-5030 https://doi.org/10.1021/nn300571c PMid:22578158
- Lucia Pasti, Andrea Volterra, Tullio Pozzan, and Giorgio Carmignoto: Intracellular Calcium Oscillations in Astrocytes. A Highly Plastic, Bidirectional Form of Communication between Neurons and Astrocytes In Situ. The Journal of Neuroscience 1997; 17(20): 7817–7830. https://doi.org/10.1523 /JNEUROSCI.17-20-07817.1997 PMid:9315902
- Thomas Hofer. Model of Intercellular Calcium Oscillations in Haepatocytes: Synchronization of Heterogeneous Cells. Biophysical Journal 1999; 77: 1244 –1256 https://doi.org/ 10.1016/S0006-3495(99)76976-6
- 27. Bertina F. Jones, Rebecca R. Boyles, Sung-Yong Hwang, Gary S. Bird, and James W. Putney. Calcium Influx Mechanisms Underlying Calcium Oscillations in Rat Haepatocytes. Haepatology 2008; 48: 1273-1281. https://doi.org/10.1002/hep.22461 PMid:18802964 PMCid:PMC2808042

- Isabelle Garcin, and Thierry Tordjmann. Calcium Signalling and Liver Regeneration International Journal of Hepatology 2012; Article ID 630670, 6 pages
- Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 1990; 247: 470– 473.https://doi.org/10.1126/science.1967852 PMid:1967852
- Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 1994; 263:1768– 1771. https://doi.org/10.1126/science.8134839 PMid:8134839
- Jeftinija SD, Jeftinija KF, Stefanovic G, Liu F. Neuroligandsevoked calcium-dependent release of excitatory amino acids from cul- tured astrocytes. J Neurochem 1996; 66: 676–684. https://doi.org/10.1046/j.1471-4159.1996.66020676.x PMid:8592139
- 32. Thomas AP, Bird GS, Hajnóczky G, Robb-Gaspers LD, Putney JW Jr. Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996; 10(13):1505-17. https://doi.org/10.1096/fasebj.10.13.8940296 PMid:8940296
- 33. Y. M. Tang, E. R. Travis, R. M. Wightman, A. S. Schneider. Sodium—Calcium Exchange Affects Local Calcium Signal Decay and the Rate of Exocytotic Secretion in Single Chromaffin Cells. J Neurochem. 2000; 74(2): 702-710. https://doi.org/10.1046/j.1471-4159.2000.740702.x PMid:10646522
- 34. Pasti Lucia, Micaela Zonta, Tullio Pozzan, Stefano Vicini, and Giorgio Carmignoto. Cytosolic Calcium Oscillations in Astrocytes May Regulate Exocytotic Release of Glutamate. The Journal of Neuroscience 2001; 21(2):477–484. https://doi.org/10.1523/JNEUROSCI.21-02-00477.2001 PMid:11160427
- Baartscheer A, Schumacher CA, Fiolet JW. Cytoplasmic sodium, calcium and free energy change of the Na+/Ca2+-

exchanger in rat ventricular myocytes. J Mol Cell Cardiol. 1998; 30(11): 2437-2447. https://doi.org/10.1006 /jmcc.1998.0803 PMid:9925378

- 36. Boah Lee, Taegeun Song, Kayoung Lee, Jaeyoon Kim, Per-Olof Berggren, Sung Ho Ryu Junghyo Jo. Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. PLoS ONE 2017; 12(8): e0183569. https://doi.org /10.1371/journal.pone.0183569 https://doi.org/10.1371/journal.pone.0183569
- Yaron Penna, Menahem Segalb, and Elisha Moses. Network synchronization in hippocampal neurons. PNAS 2016; 113(12): 3341–3346. https://doi.org/10.1073/pnas. 1515105113 PMid:26961000 PMCid:PMC4812773
- 38. Ramya Balaji, Christina Bielmeier, Hartmann Harz, Jack Bates, Cornelia Stadler, Alexander Hildebrand et. al . Calcium spikes, waves and oscillations in a large, patterned epithelial tissue. Scientific Reports 2017;7: 42786 https://doi.org/10.1038/srep42786 PMid:28218282 PMCid:PMC5317010
- 39. Reinhold Penner and Erwin Neher. The role of calcium in stimulus-Secretion coupling in excitable and non-excitable cells. Exp. Biol. 1988; 139: 329-345.
- 40. E. A. Turovskya, N. P. Kaimachnikova, M. V. Turovskayaa, A. V. Berezhnova, V. V. Dynnika, and V. P. Zinchenkoa. Two Mechanisms of Calcium Oscillations in Adipocytes Biochemistry (MOSCOW): Membrane and Cell Biology 2012; 6(1, Supplement A) 463-472.

Cite this article as:

Manash Barthakur and Jitendra Goswami. Intracellular calcium oscillations in excitable and nonexcitable cells: A review. Int. Res. J. Pharm. 2018;9(7):42-46 http://dx.doi.org/10.7897/2230-8407.097123

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.