

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

www.irjponline.com ISSN 2230 – 8407

Research Article

FORMULATION AND EVALUATION OF SUBLINGUAL FILM OF NATEGLINIDE

Shubham Sali ^{1*}, Sheetal Gondkar ¹, Ravindranath Saudagar ²

¹Department of Pharmaceutics, R. G. Sapkal College of Pharmacy, Anjaneri, Nashik, Maharashtra, India

²Department of Pharmaceutical Chemistry, R. G. Sapkal College of Pharmacy, Anjaneri, Nashik, Maharashtra, India *Corresponding Author Email: shubhamsali44@gmail.com

Article Received on: 06/07/18 Approved for publication: 27/07/18

DOI: 10.7897/2230-8407.097152

ABSTRACT

Sublingual route is a very useful for rapid onset of action with better patient compliance. It provides better drug utilization and improves the efficacy of active pharmaceutical ingredients. The oral route is the most acceptable for patients. Fast dissolving oral drug delivery system is solid dosage form which disintegrates or dissolves within second when placed in the mouth without need of water or chewing. The current study presents the formulation aspects, manufacturing methods like solvent casting, evaluation parameters and applications of fast dissolving films by sublingual route by using polymers such as PVP K-30, PVA and PEG-400 as a plasticizer and Mannitol as a sweetener. A film formed in F3 formulation was transparent, smooth and homogenous with best film forming property among all the film forming agents.

Keywords: Nateglinide, Polyvinyl alcohol, Polyvinyl pyrrolidone, Polyethylene glycol, Mannitol, Sublingual film, Solvent casting

INTRODUCTION

For the last two decades, there has been an enhanced demand for more patient compliant dosage forms. The cost involved and time consumed in the development of a single new chemical entity has made it mandatory for pharmaceutical companies to reconsider delivery strategies to improve the efficacy of drugs that have already been approved. Therefore, pharmaceutical Industries are now directed towards reformulating existing drugs into new drug delivery systems.¹ Many patients find it difficult to swallow tablets and hard gelatin capsules and do not take their medicines as prescribed. Difficulty in swallowing or dysphagia is seen to afflict nearly 35% of the general population. Other groups, who may experience problems in swallowing solid dosage forms, are the mentally ill, to develop mentally disabled, uncooperative patient and reduced liquid intake plans or nausea.² Dosage alternatives from oral route have been developed especiallyfor pediatric, geriatric, bedridden, nauseous or non-compliant patients.³ Buccal routes are one of such alternatives which havelately become an important route of drug administration. As polymers and plasticizers forms the main body of MDF; therefore, their properties greatly affect the characteristics of MDF. 4, 5

Concept of oral dissolving films⁶

- Oral dissolving film is flexible
- The dosage form can be consumed at any place
- Pain avoidance
- Available in various size and shapes
- Un Obstructive
- Fast disintegration
- Rapid release
- Excellent mucoadhesion

Ideal characteristics of a drug⁷

- The drug should have pleasant taste
- The drug to be incorporated should have moderate dose
- The drugs with smaller and moderate molecular weight are preferable
- The drug should have good stability and solubility in saliva
- It should have the ability to permeate oral mucosal tissue
- It should be partially unionized at the pH of oral cavity

The objective of the study was to prepare Fast Dissolving Films (FDF) of nateglinide which can be useful in hyperglycemia (Type 2 DM). Fast Dissolving Film was prepared by solvent casting method using various polymers such as PVP K30, PVA, PEG 400 and Mannitol as a sweetener. Prepared films were evaluated for thickness, tensile strength, folding endurance, disintegration time, surface pH, drug content uniformity, Invitro dissolution study and stability studies.

MATERIALS AND METHODS

Nateglinide as a gift sample from CIPLA, Mumbai and Polyvinyl Alcohol, Polyvinyl Pyrrolidone (PVP K 30), Polyethylene glycol 400 and Mannitol are purchased from Research Fine Chem Laboratory, Mumbai.

Preparation of sublingual film

Weigh PVA & PVP K30 and mix them in 10ml of water. Weigh required amount of drug and dissolve in 10ml of water. With the help of magnetic stirrer ($40^{\circ}C - 50^{\circ}C$) mix both the above solutions for 15 to 20min. Now add the solution in Petri plates and keep the solution at room temperature for 24hrs for drying.

Evaluation of sublingual film

Thickness

Thickness was measured using vernier calipers. The thickness was measured at 5 locations (one at center and four corners of the film) and the mean thickness was calculated.⁸

Folding Endurance

To determine folding endurance, a stripe of film was cut and repeatedly folded at the same place till it breaks. The number of times the film could be folded at the same place without breaking gives the value of folding endurance.⁹

Tensile Strength

The tensile strength was measured using analogy tensile tester. The two clamps of the tensile tester were adjusted such that the distance between them is 3 cm by moving the upper clamp. During measurement the films were pulled by top clamp. The force applied was measured until the film was broken.¹⁰

Tensile strength was measured using a formula: Tensile Strength = Breaking Force (n) / Cross sectional area of sample (mm²).

Disintegration Time

The disintegration time is the time when film starts to break or disintegrate. It was determined in a Petri plate of 25 ml distilled water with swirling every 10 seconds and the results were obtained.¹¹

Drug Content

The film (4cm²) is placed in 100ml of volumetric flask and dissolved in methanol and volume is made up to 100ml. The solution were filtered and analyzed at 217 nm in UV Spectrophotometer. The averages of drug content of 3 films were taken as final reading.¹²

In-vitro dissolution study

The studies were carried out in freshly prepared solution of pH 6.8 Phosphate buffer using USP paddle apparatus at 37° C. Samples were withdrawn at every 1 min time interval. Samples were diluted by 6.8 phosphate buffer solution and analyzed by UV spectrophotometer.¹³

Stability Studies

The optimized formulations F3 were evaluated for its physical characteristics at intervals of 30, 60 and 90 days like appearance, pH, drug content and disintegration time.¹⁴

RESULT AND DISCUSSION

Thickness

The thickness of the drug loaded films F-1 to F-9 formulations were measured with the help of micrometer screw gauge at different strategic locations like four corners and center of each films. Mean SD were calculated. Thickness should be controlled within $a \pm 5$ % variation of standard value.

Folding Endurance

The number of times the film fold until it breaks was reported. The studies reflex influence of concentration of PVA in the formulation. As the concentration of PVA is increased, folding endurance is also increased.

Tensile Strength

From the results it clears that when the concentration of the polymer increases, the tensile strength of the sublingual film also increases. The formulation. Presence of PEG- 400 as a plasticizer imparts flexibility to the Polymers. Tensile strength measures the ability of the sublingual film to withstand rupture.

Disintegration Time

In-vitro disintegration time is determined visually in a glass dish of 25 ml distilled water with swirling every 10 seconds. The disintegration is the time when sublingual film breaks or disintegrates. PVP K-30 is incorporated as a super-disintegrates. As the concentration of PVP K-30 increases, the disintegration time decreases.

Drug Content

Drug content of optimized batches were calculated by using sublingual film. Three trials from each formulation were analyzed spectrophotometrically. The mean value and standard deviation of all the formulations are calculated. The drug content ranging from 97.05 ± 2.160 to 99.39 ± 2.460 .

In-vitro dissolution study

In-vitro dissolution study shows maximum release i.e. 98.57% for F3 formulation this could be attributed to higher concentration of PVP and lower concentration of PVA in the formulation. This also resembles to the results of disintegration test.

Stability Studies

Optimized formulation F3 at 40°C, 75% RH \pm 5% were found to be stable up to 90 days. There were no significant change visual appearances i.e. changes in color, disintegration time and drug content.

Table 1: Composition of Nateglinide sublingual film

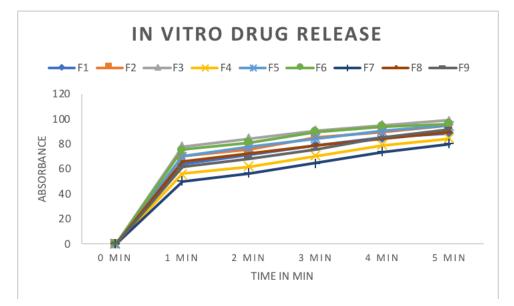
Ingredients (Mg)	F1	F2	F3	F4	F5	F6	F7	F8	F9
Nateglinide	360	360	360	360	360	360	360	360	360
PVA	150	150	150	200	200	200	250	250	250
PVP K-30	200	250	300	200	250	300	200	250	300
PEG 400	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Mannitol	40	40	40	40	40	40	40	40	40
Water	q.s	q.s.							

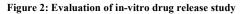
Table 2: Evaluation data of various parameters

Batch	Thickness	Folding Endurance	Tensile Strength
F1	0.092 ± 0.022	150 ± 1.945	1.1536 ± 0.032
F2	0.094 ± 0.020	155 ± 2.201	1.3557 ± 0.026
F3	0.098±0.018	160 ± 2.515	1.7325 ± 0.031
F4	0.112±0.025	170 ± 2.640	1.2211 ± 0.010
F5	0.115±0.041	165 ± 2.431	1.4237 ± 0.050
F6	0.110±0.016	175 ± 2.709	1.6738 ± 0.040
F7	0.085 ± 0.008	210 ± 3.135	1.3634 ± 0.045
F8	0.090±0.012	205 ± 2.820	1.5811 ± 0.038
F9	0.083 ± 0.016	220 ± 3.210	1.5165 ± 0.036

Table 3: Evaluation data of various parameters

Batch	Disintegration time	Drug content
F1	36.7±1.141	97.10±2.160
F2	34.2 ± 0.580	98.35±2.350
F3	33.0 ± 0.535	99.31±2.455
F4	37.3 ± 1.230	97.05 ± 2.155
F5	35.0 ± 0.860	98.20±2.310
F6	33.3 ± 0.550	99.08 ± 2.425
F7	38.0 ± 1.130	97.40 ± 2.425
F8	35.5 ± 0.875	98.71 ± 2.390
F9	33.3 ± 0.400	99.15 ± 2.433


Table 4: Stability studies for F3 formulation


S.N	Observation	Before Stability Testing	After Stability Testing		
1.	Drug content	98.57%	98.45%		
2.	Visual appearance (Color changes)	Pale White	Pale White		
3.	Disintegration time	33 Sec	34 Sec		

Time	% Cumulative drug release ± S.D								
In Min	F1	F2	F3	F4	F5	F6	F7	F8	F9
1	63.34±	69.94±	77.85±	55.95±	70.18±	75.10±	50.03±	65.51±	61.60±
	0.300	0.501	0.650	0.670	0.550	0.525	0.740	0.415	0.190
2	71.43±	75.49±	84.21±	62.10±	77.28±	81.25±	56.54±	72.30±	68.50±
	0.595	0.550	0.830	0.250	0.610	0.826	0.785	0.540	0.490
3	79.10±	85.51±	90.65±	70.48±	84.59±	89.69±	64.80±	78.90±	75.27±
	0.670	0.880	0.940	0.560	0.855	0.895	0.343	0.630	0.534
4	84.72±	89.92±	94.85±	79.20±	90.04±	93.80±	73.59±	83.82±	85.10±
	0.861	0.900	0.873	0.685	0.911	0.965	0.651	0.775	0.870
5	88.51±	95.17±	98.57±	84.38±	94.49±	96.35±	80.10±	89.14±	91.85±
	0.795	0.971	0.993	0.842	0.964	0.984	0.805	0.890	0.924

Figure 1: Desired shape of sublingual film

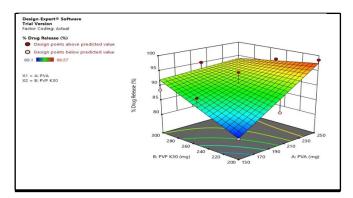


Figure 3: Surface response plot showing effect of polyvinyl alcohol and polyvinyl pyrrolidone K-30 on drug release

CONCLUSION

The Nateglinde sublingual films were prepared using different film forming polymers. Films formed with polyvinyl alcohol and polyvinyl pyrrolidone were found transparent, clear, smooth. While, least disintegration time for F3 (33 sec) formulation were observed. Also, the highest dissolution rate were observed for F3 (98.57%) formulation.

ACKNOWLEDGEMENT

The authors wish to acknowledge Cipla, Mumbai for providing a gift sample of nateglinide for the research work.

REFERENCES

1. Suresh BB.; Quick Dissolving Films-A Novel Approach to Drug Delivery; Drug Delivery Technology 2003; 3(3): 1-6

2. Arya A, Chandra A, Sharma V, Pathak K, Fast Dissolving Oral Films: An Innovative Drug Delivery System and Dosage Form, International Journal of Chem Tech Research, 2010; 2(1): 576-583

3. Kundu S, Sahoo PK.; Recent trends in the development of orally disintegrating tablet technology pharmaceutics, 2008; 4-11 4. Mishra R and Amin A., Formulation and Characterization of Rapidly Dissolving Films of Cetirizine hydrochloride using Pullulan as a Film Forming Agent, Indian Journal Pharm Education Research, 2011; 45(1): 75-76

5. Choudhary DR, Patel VA, Kundawala AJ, Formulation and evaluation of quick dissolving film of levocetirizine dihydrochloride, Int J Pharma Tech, 2011;3(1): 1740-1749

6. Saini S, Nand A., Dhari J., Formulation, development and evaluation of oral fast dissolving anti-allergic film of levocetrizine di-hydrochloride; Journal of Pharm Science and Research; 2011; 3(7): 1322-1325

7. Patel RA, Prajapati SD, Fast dissolving film as a newer venture in fast dissolving dosage forms. International Journal Drug Development and Research.,2010; 2(2): 232-246

8. Gavaskar B, Kumar S, Guru S and Ray M. Overview on fast dissolving films, International Journal of Pharmacy and Pharmaceutical Sciences, 2009; 2: 29-33

9. Choudhary DR, Patel V, Patel H, Kundawala AJ. Exploration of Film Forming Properties of Film Formers Used in The Formulation of Rapid Dissolving Films. International Journal Chem Technology Research, 2011; 3(2): 532-533

10. Singh S, Jain S, Muthu MS, Tiwari S, Tilak R, Preparation and evaluation of buccal bio adhesive films containing clotrimazole; Pharm science technology 2008; 9(1) ;660-667

11. Nandy BC., M. Bhaskar; An overview on fast dissolving drug delivery, Asian Journal Pharm Science Research; 1(2); July 2011; 7-8

12. Salunkhe SD., Sathe BS., Jain P., Patil RN.; Formulation and evaluation of fast dissolving oral thin film of Ropinirole HCl; International Journal of Chemistry and Pharmaceutical Sciences, 2013; 1(5); 351-361

13. Qadir KA., Charyulu RN., Prabhu P., Bhatt S.; Formulation and evaluation of fast dissolving films of loratadine for sublingual use; International research journal of pharmacy; 2012; 3(7); 157-161

14. ICH Harmonised Tripartite Guideline, International Conference on Harmonisation, Stability testing of new Drug substances and products Q1A(R2) and Evaluation for stability data Q1E, current step version; 6 February 2003

Cite this article as:

Shubham Sali *et al.* Formulation and evaluation of sublingual film of nateglinide. Int. Res. J. Pharm. 2018;9(7):215-218 http://dx.doi.org/10.7897/2230-8407.097152

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.