Research Article

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

www.irjponline.com

ISSN 2230-8407 [LINKING]

COMPARATIVE STUDY TO CORRELATE AUTOPSY AND ULTRASONOGRAPHY FINDINGS IN THE FETUS WITH CONGENITAL ANOMALIES BY CONTRASTING FINDINGS

Dr. Rahul Raj

Assistant Professor, Department of Radio-Diagnosis, Lord Buddha Koshi Medical College and Hospital, Saharsa, Bihar

Address for correspondence

Email: rahulraj7710@gmail.com

How to cite: Raj R. Comparative Study To Correlate Autopsy And Ultrasonography Findings In The Fetus With Congenital Anomalies By Contrasting Findings. International Research Journal of Pharmacy, 2019,10:4:228-231.

DOI: 10.7897/2230-8407.1004153

ABSTRACT

Background: Pregnant women can get ultrasounds without putting the mother or foetus at danger. As a scientific examination of the anatomy, ultrasonography evaluates the characteristics of every system and every organ that is connected to it.

Aim: The current study's goals were to identify any discrepancies between the autopsy and ultrasound results in the foetus with congenital defects, as well as to compare and correlate the data.

Methods: Assessments were made for imperforate anal defects, limb abnormalities, club foot, diaphragmatic hernia, cleft lip, cleft palate, and omphalocele, among other gastrointestinal anomalies, in all of the foetuses that were included

Results: Based on a comparison of autopsy and ultrasound data, the foetus was classified into four groups. The current study suggests that dietary practices and socioeconomic position have a significant impact on autopsy and ultrasonography.

Conclusion: Early detection of congenital deformities and parent awareness can aid in the prompt MTP (Medical Termination of Pregnancy) and prevention of these deformities in future pregnancies.

Keywords: Autopsy, Categorization, congenital malformations, fetal anomalies, Sonography

INTRODUCTION

Prenatal scans are safe for both the mother and the foetus and are often performed between weeks 6 and 20 of pregnancy. Prenatal scans, as these ultrasonography tests are called, are used to identify the embryo's defects. This can also assist the gynaecologist in planning a prompt medical termination of pregnancy (MTP) and avert similar deformities in future pregnancies.1.

Ultrasonography is a part of an anatomic survey that evaluates all the organs connected to each system as well as exterior aspects without causing any harm to the mother or foetus.2.

Foetal abnormalities identified by ultrasonography might be classified as substantial or mild. In most cases, the ultrasonographic examination misses minor irregularities. The incidence of these small abnormalities is close to 14% of all ultrasonography scans that are reported and discovered. An ultrasonography examination may or may not reveal these small irregularities. Major malformations, on the other hand, have the potential to be deadly to the foetus, whereas these minor defects have no effect on the fetus's survival or wellbeing.3.

The goal of the current study was to evaluate the relationship between sex ratio and foetal abnormalities, as well as to identify discrepancies in the autopsy and ultrasound results in the foetus with congenital malformations.

MATERIALS AND METHODS

In order to analyse and link the autopsy and ultrasound results in the foetus with congenital malformations, as well as to identify opposing findings, the current descriptive clinical investigation was carried out to evaluate the sex ratio and foetal anomalies. The study was carried out with approval from the relevant ethical committee. The individuals who visited the Institute's outpatient obstetrics and gynaecology department made up the study population. All study participants gave their informed permission after being fully told about the study's design. A total of 48 prenatal ultrasonography results from pregnant women who had embryologic abnormalities detected during the scan and who had either undergone medical pregnancy termination or had foetal materials taken for autopsy after delivery were included in the research. Among the specimens gathered was the placenta. Professionals with expertise in the discipline performed all autopsy at the institute.

The study's inclusion criteria included participants whose foetuses were discovered to be embryologically deficient on ultrasonography and whose postmortem results corroborated this finding, as well as those subjects who agreed to submit the results of their ultrasound scans. Subjects with foetal abnormalities for which there were no ultrasound scans and those who refused to give their ultrasound scans were the study's exclusion criteria.

Following the research subjects' final inclusion, each subject underwent a medical examination and a thorough history was taken. Every subject's demographic information was documented, including the mother's age and any family history of embryologic abnormalities, abortions, stillbirths, radiation exposure, pollutants, food habits, pregnancy medications, socioeconomic status, and length of gestation.

Every participant was monitored until the end of the pregnancy or the time of birth, whichever came first. The foetus was recovered after birth or ejection. The fetus's outward appearance was compared with the ultrasonography records. The foetus and placenta were removed between weeks 16 and 20 of pregnancy, and they were preserved in 10% formalin. For the fetus's autopsy, forceps, scissors, and a knife were used.

The collected data were subjected to the statistical evaluation using SPSS software version 21 (Chicago, IL, USA) and one-way ANOVA and t-test for results formulation. The data were expressed in percentage and number, and mean and standard deviation. The level of significance was kept at p<0.05.

RESULTS

In order to analyse and link the autopsy and ultrasound results in the foetus with congenital malformations, as well as to identify opposing findings, the current descriptive clinical investigation was carried out to evaluate the sex ratio and foetal anomalies. 48 prenatal ultrasonography results from pregnant women who had embryologic abnormalities detected during the scan and who had either undergone medical pregnancy termination or had foetal tissues taken for autopsy after delivery were included in the research.

Based on the following criteria, the correlation between prenatal findings, ultrasound results, and foetal autopsy was categorised into the following groups.4

Category A: The autopsy and ultrasound results were both concurred.

Category B: Extra information on other abnormalities found.

Category C: Only specific ultrasound results were disclosed by the foetal autopsy.

Category D: The results of the autopsy and the ultrasound did not match

When the limb abnormalities in the research participants were evaluated, it was found that 6.25% (n=3) of the 48 specimens evaluated had skeletal dysplasia, which resulted in the shortening of both the upper and lower segments of both limbs (Figure 1a). Of the research participants and foetuses, 31.25% (n=15) had Talipes Equino Varus. 4.16% (n=2) of the research participants had an omphalocele (Figure 1b). It was linked to a short neck, edoema, scoliosis, a horseshoe-shaped kidney, fused toes, and the disappearance of the right lower leg. In contrast, the other two cases, as listed in Table 1, simply had an omphalocele. In addition, 4.16% (n=2) of research participants had cleft palates, and one of them also had a small phallus and an ill-formed nose (Table 1).

The results of the present study have also shown that diaphragmatic hernia was seen in 3 subjects in total. As shown in table 2, diaphragmatic hernias affecting the right side were observed in 2.08% (n=1) of the study individuals, whereas those affecting the left side were observed in 4.16% (n=2) of the patients.

When the occurrence of imperforate anus in research subjects' foetuses was evaluated, it was observed that 8.33% (n=4) of the foetuses had it, while the remaining 91.66% (n=44) study subjects had no incidence of the imperforate anus (Table 2). As shown in Table 2, the assessment of the single palmer presence in the study foetus revealed that single palmer absence was observed in 97.91% (n=47) research subjects, whereas single palmer in conjunction with two lobbed lungs was observed in 2.08% (n=1) study subjects.

DISCUSSION

In order to analyse and link the autopsy and ultrasound results in the foetus with congenital malformations, as well as to identify opposing findings, the current descriptive clinical investigation was carried out to evaluate the sex ratio and foetal anomalies. A total of 48 prenatal ultrasonography results from pregnant women who had embryologic abnormalities detected during the scan and who had either undergone medical pregnancy termination or had foetal materials taken for autopsy after delivery were included in the research. After limb abnormalities in the research participants were evaluated, it was observed that 6.25% (n=3) of the 48 specimens evaluated had skeletal dysplasia, which resulted in the shortening of both the upper and lower segments of both limbs. Of the research participants and foetuses, 31.25% (n=15) had Talipes Equino Varus.

Of the research individuals, 4.16% (n=2) had omphaloceles. While the other two examples simply contain an omphalocele, it was linked to a horseshoe-shaped kidney, fused toes, scoliosis, lack of the right lower leg, edoema, and a short neck. In addition, 4.16% (n=2) of the research participants had cleft palates, and one of them also had a small phallus and an ill-formed nose. These findings corroborated those of studies by Valerie D. et al. (2011) and Nayab A. et al. (2010), who both found a comparable incidence of limb anomalies on foetus evaluation. The current study's findings also indicate that a diaphragmatic hernia was seen in three of the participants.

As shown in table 2, diaphragmatic hernias affecting the right side were observed in 2.08% (n=1) of the study individuals, whereas those affecting the left side were observed in 4.16% (n=2) of the patients. These findings concurred with those of Vimercati A et al. (2012) and Mohan H et al. (2004), who reported finding evidence of a diaphragmatic hernia during postmortem and ultrasonography on the abnormally developing foetus.

When the research subjects' foetuses were examined for the existence of imperforate anus, it was discovered that 8.33% (n=4) of the foetuses had the condition, while the remaining 91.66% (n=44) study subjects had no incidence of the imperforate anus (Table 2).

When the single palmer in the foetus of the current study was evaluated, the findings revealed that 2.08% (n=1) of the study participants had a single palmer in conjunction with two lobbed lungs, while 97.91% (n=47) of the study patients had none at all. These results were similar to those of Devi R et al. (2007) and Pradhan R et al. (2013), who found imperforate anus and solitary palmer as foetal abnormalities on autopsy and ultrasound.

CONCLUSION

Within the constraints of the study, the current findings indicate that dietary practices and socioeconomic position have a significant impact on autopsy and ultrasonography. Early detection of congenital deformities and parent awareness can aid in the prompt MTP (Medical Termination of Pregnancy) and prevention of these deformities in future pregnancies. A few drawbacks of the current study were, nonetheless, a limited sample size, a brief monitoring period, and biases related to geographic areas. Therefore, further long-term research with bigger sample sizes and longer observation periods will aid in coming to a conclusive result.

REFERENCES

- **1.** Antonsson P, Sundberg A, Kublickas M. Correlation between Ultrasound & Autopsy findings after 2nd Trimester terminations of Pregnancy. J Perinat Med 2008;36:59-69.
- 2. Kaasen A, Tuveng A, Heiberg AE. Correlation between Prenatal Ultrasound and autopsy findings: a study of second-trimester abortions. Ultrasound Obstet Gynecol 2006;28:925-933.
- 3. Taboo ZA. Prevalence and Risk Factors for Congenital Anomalies in Mosul City. Iraqi Postgraduate Med J 2012;11(4):458-470.
- 4. Kulkarni ML. Congenital malformation. Indian Paediatr 1989;26:5-9.
- 5. Nayab A, Irshad A, Amir HM. CongenitalAnomalies: Prevalence of Congenital anomalies in2nd Trimester of Pregnancy in Madina Teaching Hospital, Faisalabad on greyscale ultrasound. JUMDC 2010;1:1-6.
- 6. Valerie D, Luc L. Fetal and Perinatal Autopsy in Prenatally Diagnosed Foetal Abnormalities with Normal Karyotype. SOGC Tech Update 2011;267:1047-57.

- 7. Vimercati A, Grasso S, Abruzzese M, Chincoli A, de Gennaro A, Miccolis A. Correlation between Ultrasound diagnosis and autopsy findings of fetal malformations. J Prenat Med 2012;6:13-7.
- 8. Mohan H, Bhardwaj S, Bal A. Congenital Visceral Malformations Role of Perinatal Autopsy in diagnosis. Foetal Diag Ther. 2004;19:131-3.
- 9. Devi R, Tilak P, Rajangam S. Multiple Congenital anomalies an aetiological Evaluation. Bombay Hospital J 2007;2:64-9.
- 10. Pradhan R, Mondal S, Adhya S, Chaudhuri GR. Perinatal Autopsy: A study from India. J Indian Acad Forensic Med 2013;35:971-3.

TABLES

Anomalies	Percentage (%)	Number (n)
Talipes Equino Varus	31.25	15
Short upper and lower segments of both limbs	6.25	3
Omphalocele	4.16	2
Cleft palate	4.16	2

Table 1: Congenital anomalies seen in the study subjects

Anomalies	Percentage (%)	Number (n)
Diaphragmatic hernia		
Right	2.08	1
Left	4.16	2
Imperforate anus		
Present	8.33	4
Absent	91.66	44
Single palmer		
Present	2.08	1
Absent	97.91	47

Table 2: Fetal anomalies seen in the study subjects