QUANTITATIVE ESTIMATION OF DNA ISOLATED FROM VARIOUS PARTS OF
ANNONA SQUAMOSA

Soni Himesh1*, Singhai A. K2 & Sharma Sarvesh2
1Suresh Gyan Vihar University, Jaipur-302025, India
2Lakshmi Narain College of Pharmacy, Raisen Road, Bhopal, M.P., India

ABSTRACT

Plants have been one of the important sources of medicines since the beginning of human civilization. There is a growing demand for plant based medicines, health products, pharmaceuticals, food supplements, cosmetics etc. *Annona squamosa* Linn is a multipurpose tree with edible fruits & is a source one of the medicinal & industrial products. *Annona squamosa* Linn is used as an antioxidant, antidiabetic, hepatoprotective, cytotoxic activity, genotoxicity, antitumor activity, antilice agent. It is related to contain alkaloids, flavonoids, carbohydrates, fixed oils, tannins & phenolic. Genetic variation is essential for long term survival of species and it is a critical feature in conservation. For efficient conservation and management, the genetic composition of the species in different geographic locations needs to be assessed. Plants are attracting more attention among contemporary pharmacy scientists because some human diseases resulting from antibiotic resistance have gained worldwide concern. A number of methods are available and are being developed for the isolation of nucleic acids from plants. The different parts of *Annona squamosa* were studied for their nucleic acid content by using spectrophotometric analysis. In order to measure DNA content of the Leaves,fruits and stems of *Annona squamosa*, Spectrophotometry serves various advantages i.e. non-destructive and allows the sample to be recovered for further analysis or manipulation. Spectrophotometry uses the fact that there is a relationship between the absorption of ultraviolet light by DNA/RNA and its concentration in a sample. This article deals with modern approaches to develop a simple, efficient, reliable and cost-effective method for isolation, separation and estimation of total genomic DNA from various parts of the same species.

Key words: *Annona squamosa*, Genomic DNA extraction, Spectrophotometric

INTRODUCTION

The family (Annonaceae), is a large family which comprising about 130 genera over 2000 species; the most important genera having a largest number of species are *Annona*, with 120species, from genera, the species of *Annona squamosa* commonly known as custard apple is cultivated throughout India, mainly edible fruit. *Annona squamosa* syn. Arabic (gishta); Bengali (ata);German (Rahm Annone,Rahmapfel,Zimtpfel,Süßsack); Hindi (sitaphal,ata,sharifa); Lao (Sino-Tibetan) (khiëb); Malay (nona sri kaya,sri kaya,buah nona); Mandarin (fan-li-chi); Portuguese (ata,fructa do conde); Sanskrit (sitaphal); Spanish (candongo,chirimoya,fructo do conde,anón,anona blanca,pinya,saramuya,anona).The plant is traditionally used for the treatment of epilepsy, dysentery, cardiac problem, worm infection, constipation, hemorrhage, antibacterial infection, dysuria, fever, and ulcer. It also has anti fertility, anti tumor and abortifacient properties1-4. *Annona squamosa* is a small, semi-deciduous tree, 3-7 m in height, with a broad, open crown or irregularly spreading branches; bark light brown with visible leaf scars and smoothish to slightly fissured into plates; inner bark light yellow and slightly bitter; twigs become brown with light brown dots (lenticels)5. DNA is polymer found in all living cells.DNA contains all genetic information needed for controlling cellular growth and development. Many protocols have been used in plant DNA isolation, but because of the chemical heterogeneity of the species many of them could be applied to a limited number of species or even closely related species in some cases fail to respond to the same protocol6. Plants, especially medicinal plants contain an array of secondary metabolites. The compounds which make them interesting for molecular biology studies and hence, for DNA isolation, themselves interfere with the DNA isolation procedure. The objective of many bioassay methods is to selectively quantitate a single biomolecule, such as a particular enzyme or antibody, or to determine the presence or absence of a known DNA sequence in an unknown sample7. The present study deals with modern approaches to develop a simple, efficient, reliable and cost-effective method for isolation and estimation of total genomic DNA from various parts of the same species.

MATERIALS AND METHODS

Plant material

To facilitate better homogenization leaves, fruit endosperm and stems were used for the experimental study. For comparing DNA concentrations plant material was collected from the same plant. The plant material was sterilized with distilled water and external moisture from the leaves & stem were allowed to dry.

Reagents and chemicals

The following chemicals and reagents were used: lysate buffer (autoclaved) [1.4 M Sodium Chloride, 20 mM EDTA, 0.02 M Soda Citrate, 2% CTAB and 100 mM Tris-HCl pH8]. Ethanol, Diphenylamine and Glacial acetic acid. All chemicals were obtained from Shyam brothers, 27- Sindhi market, Bhopal (M.P.).

DNA isolation protocol

The plant materials were cut into small pieces of about 2-3 mm sq. [1.4 M NaCl, 20 mM EDTA, 0.02 M sod. Citrate, 2% CTAB and 100 mM Tris-HCl pH8]. Above tissues separately suspended into prepared lystate buffer & homogenized in blender. The mixture was centrifuged at 5000 rpm for 10 minutes and the aqueous phase was transferred to a new tube containing 0.2 volume CTAB Solution (5%w/v CTAB and 0.7 M NaCl). They were mixed together and added 0.01% of pepsin enzyme solution. Again centrifuged and collected the aqueous phase to a new tube. When the supernatant had become clear, DNA was precipitated using double volumes of 95% cold ethanol. The test tubes were left for 5 min and observed the white webby mucus like interference formation which was
separated by using micropipette into another test tube. This was best stored in PBS (pH=7.4) or 0.9% saline.

Qualitative estimation of Nucleic acid

Killer – Killani Test: Sample with 1 ml of glacial acetic acid containing one drop of 1% ferric chloride solution. Under lay the mixture with 1 ml of concentrated sulphuric acid from the side wall of tube, a brown ring at the interface indicates a deoxy-sugar (Pentose sugar) characteristic of every nucleic acid.

Diphenylamine (DPA) Test: Sample with DPA reagent [1 gm DPA + 50 ml glacial acetic acid + 2.5ml conc.H2SO4]. Placed above mixture in boiling water bath for few min. A blue colour observed confirm the presence of DNA.

Gel Electrophoresis

1.2% (w/v) agarose was dissolved in 1X TAE buffer (40 mM Tris-Gel Electrophoresis)

Diphenylamine (DPA) Test: Sample with DPA reagent [1 gm DPA + 50 ml glacial acetic acid + 2.5 ml conc. H2SO4]. Placed above mixture in boiling water bath for few min. A blue colour observed confirm the presence of DNA.

Gel Electrophoresis

100 mg of calf thymus DNA (Oxford Lab. Reagent) was dissolved in 1X TAE buffer (40 mM Tris-Gel Electrophoresis). The dye intercalates into the DNA double helix, and the intensity of fluorescence of ethidium bromide can be amplified for producing molecular marker. Molecular markers have been shown to be useful for genetic variation of plant species. Several different PCR-based techniques have been developed during the last decade, each with specific advantages and disadvantages. The randomly amplified polymorphic DNA (RAPD) markers technique is quick, easy and requires no prior sequence information; it detects nucleotide sequence polymorphisms using single primer of arbitrary nucleotide sequence. RAPD marker has been extensively used for DNA fingerprinting.

CONCLUSION

In conclusion, these results show that leaves can be an alternative source for total genomic DNA from medicinal and succulent plants that contain high quantities of secondary metabolites. Leaves from succulent plants were easier to crush and grind under liquid nitrogen as well as lyse in buffer than succulent tissues. The isolated genomic DNA was of high molecular weight and the amount increased proportionally as the amount of petals tissue increases. This technique measures the total amount of nucleic acids in a sample (including DNA, RNA, oligonucleotides, and mononucleotides). It is therefore only useful for pure DNA preparations of a reasonably high concentration. This technique allows, at the same time DNA quantization, estimation of the extent of contamination by RNA, evaluation of DNA quality and integrity (i.e., the extent of degradation). DNA fingerprinting has used to elucidate genetic relationships at various taxonomic levels and also helpful in phylogeographic studies which can be based on information from nuclear DNA, mtDNA, and cpDNA. Phylogenetic variations were also determined in Annona squamosa species by DNA typing. This protocol will be used in future to isolate genomic DNA from tested and other related plant species for downstream molecular biology studies and can probably be extended also to other angiosperm species.

ACKNOWLEDGMENT

The work was supported by Department of Biotechnology, L.N.C.P.Bhopal (M.P.). Our special thanks to Dr.A.K.Singhai for his useful technical comments.

Table 1. Qualitative estimation of DNA

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Test</th>
<th>Observation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Killer – Killani Test</td>
<td>A brown ring at the interface</td>
<td>Indicates a deoxy sugar (Pentose sugar)</td>
</tr>
<tr>
<td>2.</td>
<td>DPA Test</td>
<td>Blue colour observed</td>
<td>presence of DNA</td>
</tr>
</tbody>
</table>
Table 2. Comparison of DNA quantity obtained following the present plant DNA isolation protocol with other routine methods.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Type of the tissue</th>
<th>Absorbance at 260nm</th>
<th>Absorbance at 280nm</th>
<th>A260/280</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Leaves</td>
<td>0.376</td>
<td>0.235</td>
<td>1.6</td>
<td>The DNA obtained was unshared, showing little or no RNA contamination</td>
</tr>
<tr>
<td>2.</td>
<td>Stem</td>
<td>0.316</td>
<td>0.0176</td>
<td>1.8</td>
<td>The DNA obtained was unshared, showing little or no RNA contamination</td>
</tr>
<tr>
<td>3.</td>
<td>Fruit</td>
<td>0.3296</td>
<td>0.206</td>
<td>1.6</td>
<td>The DNA obtained was unshared, showing little or no RNA contamination</td>
</tr>
</tbody>
</table>

Table 3. Comparison of DNA quantity obtained following the present plant DNA isolation protocol with other routine methods (Carbohydrate contamination).

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Type of the tissue</th>
<th>Absorbance at 260nm</th>
<th>Absorbance at 230nm</th>
<th>A260/230</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Leaves</td>
<td>0.376</td>
<td>0.268</td>
<td>1.4</td>
<td>The DNA obtained was unshared, showing little or no carbohydrate contamination</td>
</tr>
<tr>
<td>2.</td>
<td>Stem</td>
<td>0.316</td>
<td>0.225</td>
<td>1.4</td>
<td>The DNA obtained was unshared, showing little or no carbohydrate contamination</td>
</tr>
<tr>
<td>3.</td>
<td>Fruit</td>
<td>0.3296</td>
<td>0.235</td>
<td>1.4</td>
<td>The DNA obtained was unshared, showing little or no carbohydrate contamination</td>
</tr>
</tbody>
</table>

Table 4. Quantitative estimation of DNA

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Type of the tissue</th>
<th>Absorbance at 270nm</th>
<th>Statistical Analysis</th>
<th>Concentration (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Leaves</td>
<td>0.267</td>
<td>Correlation coefficient $R^2 = 0.998$</td>
<td>4.377</td>
</tr>
<tr>
<td>2.</td>
<td>Stem</td>
<td>0.195</td>
<td>Straight Line equation $y = 0.061x$</td>
<td>3.19</td>
</tr>
<tr>
<td>3.</td>
<td>Fruit</td>
<td>0.206</td>
<td></td>
<td>3.377</td>
</tr>
</tbody>
</table>

Fig 2: Addition of chilled ethanol

Fig 3: Standard curve of DNA

Fig 4: DNA isolated resolved on agarose gel.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared