SYNTHESIS AND ANTHELMITIC ACTIVITY OF 3-(2-HYDRAZINO
BENZOTHIAZOLES)-SUBSTITUTED INDOLE-2-ONE

CH Suresh1*, J. Venkateshwara Rao1, KN Jayaveera2, S.K.Subudhi3

1 Talla Padmavathi College of Pharmacy, Orus, Kareemabad, Warangal, Andhra Pradesh, India
2 Director, OTRI-Jawaharlal Nehru Technological University, Ananthapur, Andhra Pradesh, India
3 Learners’ Land College of Pharmacy, 100ft Bypass Road, Kareemabad, Warangal, Andhra Pradesh, India

Article Received on: 11/01/2011 Revised on: 27/02/2011 Approved for publication: 18/03/2011

*CH Suresh, Associate Professor, Talla Padmavathi College of Pharmacy, Warangal-506002, Andhra Pradesh, India
E-Mail: ch.suresh200910@gmail.com

ABSTRACT
Benzothiazoles and Isatins have emerged as structurally novel anthelmintics. Therefore various 3-(2-hydrazino benzothiazoles)-substituted Indole-2-one, were synthesized by condensation of various 2-hydrazino benzothiazole, 2-hydrazino 1,4-thiazine and 2-acid hydrazide benzothiazoles with different substituted Indole -2,3-diones (Isatins). The structures of the synthesized compounds (A1,e)(B1,e)(C1,e) were characterized by FTIR, 1HNMR and elemental analysis. All the synthesized compounds were screened for anthelmintic activity by using Indian adult earthwarms (pheretima postuma). The compounds A4,5, B6, C4 have showed good paralytic time, compared to standard albendazole drug.

KEYWORDS: Isonitrosoacetanilides, Isatins, Benzothiazoles, Earthwarms, Anthelmintic activity.

INTRODUCTION
The search for anthelmintic compounds with a more selective activity and lower toxicity continues to be an area of investigation in medicinal chemistry. The chemical diversity and various mechanisms of action of anthelmintics make it difficult to find a common way of identifying new drugs. Compounds containing a hydrazinobenzothiazole, hydrazinobenzothiazine and Isatin component have shown a broad spectrum of chemotherapeutic properties including antimicrobial1,2 antiviral3,4, anthelmite5, analgesics6, antiinflammatory7 and anticytotoxic8,9 activities of substituted indoles.

In view of our program to develop novel anthelmintic agents it was decided to synthesize various 3-(2-hydrazino benzothiazoles)-substituted Indole-2-one by condensation of substituted Isatins with different 2-hydrazino benzothiazoles (Scheme 1). The chemical structures of the synthesized compounds were confirmed on the basis of their spectral data (FTIR, 1HNMR and elemental analysis) and the purity was ascertained by TLC analysis. The details of the synthesis and biological results are presented herein.

MATERIALS AND METHODS
All the chemicals and solvents were obtained from commercial and purified using standard procedures wherever required. Melting points were taken by open capillary method and were uncorrected. The reactions were monitored by thin layer chromatography on silica gel G plates (Merck silica – 60F254) and the final products were purified by recrystallization from absolute ethanol. The structure of all the newly synthesized compounds were confirmed by FTIR (Recorded on a FTIR-8400S spectrophotometer, shimadzu), 1HNMR recorded on Bruker NMR spectrometer in deuterium substituted DMSO form using TMS as internal standard) all exchangeable protons were confirmed by addition of D2O and elemental analysis (C,H & N) using Perkin-Elmer model 240C.

General procedure for synthesis of Isonitrosoacetanilide-I (part-I)
In a 5 lit round bottomed flask were placed chloral hydrate (0.54 mol) and 1200ml of water. To this solution, were then added crystallized sodium sulphate (1300g) followed by a solution of an appropriate aromatic amine (0.5mol) in 300ml of water concentrated hydrochloric acid (0.52mol). Finally a solution of hydroxylamine hydrochloride (1.58mol) in 500ml of water was added. The contents of flask were heated over a wire gane by a mecker burner so that vigorous boiling begins in about 45min. During the heating period itself the crystals of isonitrosoacetaminilide started separating out on cooling under the current of water the entire product...
was solidified. It was filter under suction, air dried and purified by recrystallization from alcohol.

Synthesis of Indole-2,3-diones (Isatines): (II)

In a one liter round bottomed flask place a sulphuric acid 326ml was warmed to 50°C which is fitted with an efficient mechanical stirrer and to this finely powdered an appropriate isonitroso acetanilide (0.46mol) was added at such a rate so as to maintain the temperature between 60°C to 70°C. Then external cooling was applied at this stage so that the reaction could be carried out more rapidly. After the addition of isonitroso acetanilide compound was completed, the temperature of the solution was raised to 80°C and maintained at that temperature for 10 minutes to complete the reaction. Then the reaction mixture was cooled at room temperature and which is poured on crushed ice (2.5kg) while stirring. After standing for about half an hour the crude isatin separated, it is filtered and washed with cold water, to remove traces of sulphuric acid and dried. It was purified by recrystallization from methanol.

General procedure for the synthesis of 3-(2-hydrazone benzothiazole/2-hydrozino-1,4-benzothiazine/2-carbonyl hydrazine benzothiazole) - substituted Indole-2-one

Equimolar quantities of 2-Hydrazone benzothiazoles and different substituted indole -2,3-diones were added to a mixture of 4 ml of dry pridine and 20 ml of acetic anlydride and the mixture was refluxed for 2 hrs. then the reaction mixture was poured into ice water and solid obtained was filtered by recrystalixation from ethanol to give title compounds (A1,b, B1,b, C1,b) as shown physical data in table no 1.

Anthelmintic Activity

The synthesized compounds by scheme I were screened for anthelmintic activity by using earthworms. Six Indian adult earth worms (Pheretima Postama) of nearly equal size 5-8 cm in length and 0.2-0.3 cm in width were placed in standard drug solution and test compound solutions at room temperature. Normal saline was used as a control. The standard drug and test compounds were dissolved un minimum quantity of dimethylformamide (DMF) and adjusted the volume upto 15ml with normal saline to get the concentration of 0.1% w/v, 0.2% w/v and 0.5% w/v. Albenzazole was used as standard drug, the compounds were evaluated for the time taken for complete paralysis and death of earth worms. The mean lethal time for each test compound was recorded and compared with standard drug. The time taken by worms to become motionless was noted as paralysis time. To ascertain the death of motionless worms, they were frequently applied with external stimuli, which stimulate and induce movement in the worms, if alive. The mean lethal time and paralysis time of earthworms for different test compounds and standard drug were tabulated in tables 2.

Spectral Data

3-(2-hydrazone benzothiazole)-indolin-2-one(A)

IR (KBr)v(cm⁻¹): 3425.08(NH);2669.93(Ar-H);1593.80(CO);1499.21(C=C);1258.61(N=C);695.58(CS);

3-(2-hydrazone -1,4-benzothiazine)-indolin-2-one(B)

IR (KBr)v(cm⁻¹): 3338.75(NH);2980.56(Ar-CH);1646.35(CO);1501.06(N-N=C);1453.77(C=C);689.12(CS);

3-(2-carbonyl hydrazine benzothiazole)-indolin-2-one(C)

IR (KBr)v(cm⁻¹): 3421.03(NH);2964.45(Ar-CH);1691.69(CO);1596.25(N-N=C);1445.98(C=C);691.53(CS);

1H-NMR(CDCl₃):δ7.55-8.21(4CH-benzothiazole);
δ6.97-11.92(NH-hydrazide);δ6.82-7.36(CH-benzylidenium);δ8.12-11.24(NH-sec.amide)

1H-NMR(CDCl₃):δ6.92-7.66(benzothiazene);
δ7.02-7.34(NH-hydrazide);δ6.89-7.82(CH-benzylidenium);δ8.23-10.92(NH-sec.amide)

RESULT & DISCUSSION

The Anthelmintic activity of all eighteen compounds by scheme I was carried out using adult earth warms. The compounds A₄,₅, B₃,₆, C₅,₆, have showed good paralytic time, where as compounds A₆, B₃,₆, C₅,₆, have showed moderate paralytic time on earthworms compared to standard albendazole drug at 0.1%, 0.2% and 0.5% concentration of the test compounds.

ACKNOWLEDGMENT

The authors are thankful to Shri. Talla Mallesham Secretary & Correspondent L.S Educational Society, Warangal for providing necessary facilities through the principal Dr.J. Venkateshwar Rao, Talla Padmavathi College of Pharmacy, Warangal to carry out this work.

REFERENCES

1. Nagori BP, Gupta G and Balaram S. Synthesis and antimicrobial activity of some 5-[2-(1,3-Benzothiazole-2-yl-amino(ethyl)]-4-(arylideneamino)-3-mercapto(4H)-1,2,4-triazoles. Ind Drugs, 2009;46 (12): 936

3. Pandeya SN, Srimad D, Nath G and De clerq E synthesis antibacterial antifungal and anti HIV evaluation of Schiff and Mannich bases of isatin with N-[6-chlorobenzothiazole-2-yl] thio...
8. Sirisoma N, Azra Pervin, John Drewe and Ben Tseng, Bio organic and medical chemistry letters; 2009; 19; 2710-2713
9. Srivastava N, Attet Gupta A and Anil K, synthesis and CNS activity of some 1-substituted amino methyl-3-[P-(N,N-diethyl carbanoyl)phenylimino]-substituted indolin-2-ones. Indian Journal of Chemistry; 1982; 21(B); 787
12. Grover JK. Experiments in pharmacy and pharmacology IInd Edn 1993

Table 1: ANALYTICAL DATA FOR THE SYNTHESIZED COMPOUNDS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Comp</th>
<th>Molecular Formula</th>
<th>m.p° C</th>
<th>% yield</th>
<th>Mol.wt</th>
<th>% Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>01</td>
<td>A</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>217</td>
<td>75</td>
<td>294.32</td>
<td>61.21</td>
</tr>
<tr>
<td>02</td>
<td>A</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>217</td>
<td>87</td>
<td>338.33</td>
<td>56.80</td>
</tr>
<tr>
<td>03</td>
<td>A</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>210</td>
<td>78</td>
<td>308.33</td>
<td>62.32</td>
</tr>
<tr>
<td>04</td>
<td>A</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>206</td>
<td>84</td>
<td>328.76</td>
<td>54.80</td>
</tr>
<tr>
<td>05</td>
<td>A</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>190</td>
<td>73</td>
<td>339.32</td>
<td>53.09</td>
</tr>
<tr>
<td>06</td>
<td>A</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>228</td>
<td>79</td>
<td>364.22</td>
<td>49.46</td>
</tr>
<tr>
<td>07</td>
<td>B</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>218</td>
<td>80</td>
<td>308.33</td>
<td>62.27</td>
</tr>
<tr>
<td>08</td>
<td>B</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>222</td>
<td>81</td>
<td>320.34</td>
<td>63.73</td>
</tr>
<tr>
<td>09</td>
<td>B</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>213</td>
<td>73</td>
<td>322.38</td>
<td>63.33</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>202</td>
<td>69</td>
<td>342.80</td>
<td>56.06</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>192</td>
<td>68</td>
<td>353.33</td>
<td>54.38</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>226</td>
<td>71</td>
<td>377.44</td>
<td>50.91</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>219</td>
<td>66</td>
<td>332.34</td>
<td>57.82</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>221</td>
<td>68</td>
<td>366.34</td>
<td>55.73</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>190</td>
<td>71</td>
<td>336.36</td>
<td>60.70</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>210</td>
<td>74</td>
<td>356.78</td>
<td>52.53</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>196</td>
<td>80</td>
<td>367.33</td>
<td>52.31</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>C$_7$H$_9$N$_2$OS</td>
<td>224</td>
<td>82</td>
<td>392.33</td>
<td>48.99</td>
</tr>
</tbody>
</table>
Part - I

\[
R \rightarrow \text{NH} \quad \text{NH} \quad \text{NH} \quad \text{NH} \quad \text{NH}
\]

\[
\text{Cl}_{3}CCH(OH)_{2} \rightarrow \text{NH}_{2} \quad \text{OH, HCl, Na}_{2}SO_{4}
\]

\[
\text{HC=N-OH} \quad \text{HC=N-OH}
\]

\[
\text{ConH}_{2}SO_{4} \quad \text{H}_{2}O
\]

Part - II

\[
A_{1-6}
\]

\[
\text{Dry Pyridine AC}_{2}O
\]

\[
\text{Dry Pyridine AC}_{2}O
\]

\[
B_{1-6}
\]

\[
R = -H, -5-COOH, 5-CH_{3}, 5-Cl, 5-NO_{2}, -5-Br
\]
<table>
<thead>
<tr>
<th>S.No</th>
<th>Compound</th>
<th>Concentration % W/V</th>
<th>Time in Minutes Mean ± SD For Paralysis</th>
<th>For Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A<sub>1</sub></td>
<td>0.1 54±0.52 76±0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 49±0.29 68±0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 06±0.63 52±0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A<sub>2</sub></td>
<td>0.1 57±0.37 143±0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 47±0.46 138±0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 49±0.39 127±0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A<sub>3</sub></td>
<td>0.1 61±0.41 171±0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 58±0.26 175±0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 54±0.63 146±0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A<sub>4</sub></td>
<td>0.1 57±0.28 149±0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 48±0.31 151±0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 47±0.82 139±0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A<sub>5</sub></td>
<td>0.1 48±0.59 152±0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 43±0.26 138±0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 32±0.51 126±0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A<sub>6</sub></td>
<td>0.1 57±0.43 161±0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 56±0.45 153±0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 42±0.38 134±0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B<sub>1</sub></td>
<td>0.1 53±0.29 172±0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 62±0.33 158±0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 57±0.37 148±0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B<sub>2</sub></td>
<td>0.1 64±0.44 168±0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 60±0.52 163±0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 58±0.53 148±0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B<sub>3</sub></td>
<td>0.1 68±0.41 169±0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 65±0.62 152±0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 58±0.28 142±0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B<sub>4</sub></td>
<td>0.1 49±0.58 149±0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 46±0.42 142±0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 35±0.34 133±0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>B<sub>5</sub></td>
<td>0.1 62±0.32 168±0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 59±0.28 172±0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 56±0.38 148±0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B<sub>6</sub></td>
<td>0.1 67±0.16 162±0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 65±0.52 148±0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 59±0.28 142±0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C<sub>1</sub></td>
<td>0.1 58±0.13 173±0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 63±0.26 156±0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 51±0.32 146±0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C<sub>2</sub></td>
<td>0.1 73±0.42 178±0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 67±0.16 179±0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 60±0.20 158±0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>C<sub>3</sub></td>
<td>0.1 68±0.14 181±0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 64±0.24 162±0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 59±0.13 147±0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C<sub>4</sub></td>
<td>0.1 44±0.51 138±0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 39±0.52 132±0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 36±0.25 128±0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>C<sub>5</sub></td>
<td>0.1 56±0.30 172±0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 54±0.28 161±0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 40±0.42 154±0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>C<sub>6</sub></td>
<td>0.1 52±0.34 163±0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 48±0.32 152±0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 41±0.61 146±0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 35±0.19 195±0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 71±0.32 187±0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>